Bayesian Optimal Sensor Placement for Modal Identification of Civil Infrastructures

2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Costas Argyris ◽  
Costas Papadimitriou ◽  
Panagiotis Panetsos

A Bayesian optimal experimental design (OED) method is proposed in this work for estimating the best locations of sensors in structures so that the measured data are most informative for estimating reliably the structural modes. The information contained in the data is measured by the Kullback-Leibler (K-L) divergence between the prior and posterior distribution of the model parameters taken in modal identification to be the modal coordinates. The optimal sensor placement that maximizes the expected K-L divergence is shown also to minimize the information entropy of the posterior distribution. Unidentifiability issues observed in existing formulations when the number of sensors is less than the number of identified modes, are resolved using a non-uniform prior in the Bayesian OED. An insightful analysis is presented that demonstrates the effect of the variances of Bayesian priors on the optimal design. For dense mesh finite element models, sensor clustering phenomena are avoided by integrating in the methodology spatially correlated prediction error models. A heuristic forward sequential sensor placement algorithm and a stochastic optimization algorithm are used to solve the optimization problem in the continuous physical domain of variation of the sensor locations. The theoretical developments and algorithms are applied for the optimal sensor placement design along the deck of a 537 m concrete bridge.

2020 ◽  
Vol 14 (1) ◽  
pp. 69-81
Author(s):  
C.H. Li ◽  
Q.W. Yang

Background: Structural damage identification is a very important subject in the field of civil, mechanical and aerospace engineering according to recent patents. Optimal sensor placement is one of the key problems to be solved in structural damage identification. Methods: This paper presents a simple and convenient algorithm for optimizing sensor locations for structural damage identification. Unlike other algorithms found in the published papers, the optimization procedure of sensor placement is divided into two stages. The first stage is to determine the key parts in the whole structure by their contribution to the global flexibility perturbation. The second stage is to place sensors on the nodes associated with those key parts for monitoring possible damage more efficiently. With the sensor locations determined by the proposed optimization process, structural damage can be readily identified by using the incomplete modes yielded from these optimized sensor measurements. In addition, an Improved Ridge Estimate (IRE) technique is proposed in this study to effectively resist the data errors due to modal truncation and measurement noise. Two truss structures and a frame structure are used as examples to demonstrate the feasibility and efficiency of the presented algorithm. Results: From the numerical results, structural damages can be successfully detected by the proposed method using the partial modes yielded by the optimal measurement with 5% noise level. Conclusion: It has been shown that the proposed method is simple to implement and effective for structural damage identification.


2017 ◽  
Vol 823 ◽  
pp. 230-277 ◽  
Author(s):  
Vincent Mons ◽  
Jean-Camille Chassaing ◽  
Pierre Sagaut

An optimal sensor placement procedure is proposed within the framework of variational data assimilation (DA) for unsteady flows, with the aim of maximizing the efficiency of the DA procedure. It is dedicated to the a priori design of a sensor network, and relies on a first-order adjoint approach. The proposed methodology first consists in identifying, via optimal control, the locations in the flow that have the greatest sensitivity with respect to a change in the initial condition, boundary conditions or model parameters. In a second step, sensors are placed at these locations for DA purposes. The use of this optimal sensor placement procedure does not require extra development in the case where a variational DA suite is available. The proposed methodology is applied to the reconstruction of unsteady bidimensional flows past a rotationally oscillating cylinder. More precisely, the possibilities of reconstructing the rotational speed of the cylinder and the initial flow, which here encompasses upstream conditions, from various types of observations are investigated via variational DA. Then, the observation optimization procedure is employed to identify optimal locations for placing velocity sensors downstream of the cylinder. Both reduction in the computational cost and improvement in the quality of the reconstructed flow are achieved through optimal sensor placement, encouraging the application of the proposed methodology to more complex and realistic flows.


Sign in / Sign up

Export Citation Format

Share Document