scholarly journals MXenes as Flow Electrodes for Capacitive Deionization of Wastewater

Author(s):  
Kathryn Primerose Drake

This dissertation addresses problems that arise in a diverse group of fields including cosmology, electromagnetism, and graphic design. While these topics may seem disparate, they share a commonality in their need for fast and accurate algorithms which can handle large datasets collected on irregular domains. An important issue in cosmology is the calculation of the angular power spectrum of the cosmic microwave background (CMB) radiation. CMB photons offer a direct insight into the early stages of the universe's development and give the strongest evidence for the Big Bang theory to date. The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) grid is used by cosmologists to collect CMB data and store it as points on the sphere. HEALPix also refers to the software package that analyzes CMB maps and calculates their angular power spectrums. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the curvature of the universe, dark matter density, and the nature of dark energy. In the first paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a vital component for computing the CMB angular power spectrum. Using numerical experiments, we demonstrate that the new method provides better accuracy and a higher convergence rate when compared to the current methods on synthetic data. This paper is presented in Chapter 2. The problem of constructing smooth approximants to divergence-free (div-free) and curl-free vector fields and/or their potentials based only on discrete samples arises in science applications like fluid dynamics and electromagnetism. It is often necessary that the vector approximants preserve the div-free or curl-free properties of the field. Div/curl-free radial basis functions (RBFs) have traditionally been utilized for constructing these vector approximants, but their global nature can make them computationally expensive and impractical. In the second paper, we develop a technique for bypassing this issue that combines div/curl-free RBFs in a partition of unity (PUM) framework, where one solves for local approximants over subsets of the global samples and then blends them together to form a div-free or curl-free global approximant. This method can be used to approximate vector fields and their scalar potentials on the sphere and in irregular domains in ℝ2 and ℝ3. We present error estimates and demonstrate the effectiveness of the method on several test problems. This paper is presented in Chapter 3. The issue of reconstructing implicit surfaces from oriented point clouds has applications in computer aided design, medical imaging, and remote sensing. Utilizing the technique from the second paper, we introduce a novel approach to this problem by exploiting a fundamental result from vector calculus. In our method, deemed CFPU, we interpolate the normal vectors of the point cloud with a curl-free RBF-PUM interpolant and extract a potential of the reconstructed vector field. The zero-level surface of this potential approximates the implicit surface of the point cloud. Benefits of this method include its ability to represent local sharp features, handle noise in the normal vectors, and even exactly interpolate a point cloud. We demonstrate in the third paper that our method converges for known surfaces and also show how it performs on various surfaces found in the literature. This paper is presented in Chapter 4.

Author(s):  
Ujjal Purkayastha ◽  
Vipin Sudevan ◽  
Rajib Saha

Abstract Recently, the internal-linear-combination (ILC) method was investigated extensively in the context of reconstruction of Cosmic Microwave Background (CMB) temperature anisotropy signal using observations obtained by WMAP and Planck satellite missions. In this article, we, for the first time, apply the ILC method to reconstruct the large scale CMB E mode polarization signal, which could probe the ionization history, using simulated observations of 15 frequency CMB polarization maps of future generation Cosmic Origin Explorer (COrE) satellite mission. We find that the clean power spectra, from the usual ILC, are strongly biased due to non zero CMB-foregrounds chance correlations. In order to address the issues of bias and errors we extend and improve the usual ILC method for CMB E mode reconstruction by incorporating prior information of theoretical E mode angular power spectrum while estimating the weights for linear combination of input maps (Sudevan & Saha 2018b). Using the E mode covariance matrix effectively suppresses the CMB-foreground chance correlation power leading to an accurate reconstruction of cleaned CMB E mode map and its angular power spectrum. We compare the performance of the usual ILC and the new method over large angular scales and show that the later produces significantly statistically improved results than the former. The new E mode CMB angular power spectrum contains neither any significant negative bias at the low multipoles nor any positive foreground bias at relatively higher mutlipoles. The error estimates of the cleaned spectrum agree very well with the cosmic variance induced error.


2021 ◽  
Vol 502 (2) ◽  
pp. 2615-2629
Author(s):  
Ryuichi Takahashi ◽  
Kunihito Ioka ◽  
Asuka Mori ◽  
Koki Funahashi

ABSTRACT We have investigated the basic statistics of the cosmological dispersion measure (DM)—such as its mean, variance, probability distribution, angular power spectrum, and correlation function—using the state-of-the-art hydrodynamic simulations, IllustrisTNG300, for the fast radio burst cosmology. To model the DM statistics, we first measured the free-electron abundance and the power spectrum of its spatial fluctuations. The free-electron power spectrum turns out to be consistent with the dark matter power spectrum at large scales, but it is strongly damped at small scales (≲  Mpc) owing to the stellar and active galactic nucleus feedback. The free-electron power spectrum is well modelled using a scale-dependent bias factor (the ratio of its fluctuation amplitude to that of the dark matter). We provide analytical fitting functions for the free-electron abundance and its bias factor. We next constructed mock sky maps of the DM by performing standard ray-tracing simulations with the TNG300 data. The DM statistics are calculated analytically from the fitting functions of the free-electron distribution, which agree well with the simulation results measured from the mock maps. We have also obtained the probability distribution of source redshift for a given DM, which helps in identifying the host galaxies of FRBs from the measured DMs. The angular two-point correlation function of the DM is described by a simple power law, $\xi (\theta) \approx 2400 (\theta /{\rm deg})^{-1} \, {\rm pc}^2 \, {\rm cm}^{-6}$, which we anticipate will be confirmed by future observations when thousands of FRBs are available.


Author(s):  
Srijita Pal ◽  
Somnath Bharadwaj ◽  
Abhik Ghosh ◽  
Samir Choudhuri

Abstract We apply the Tapered Gridded Estimator (TGE) for estimating the cosmological 21-cm power spectrum from 150 MHz GMRT observations which corresponds to the neutral hydrogen (HI) at redshift z = 8.28. Here TGE is used to measure the Multi-frequency Angular Power Spectrum (MAPS) Cℓ(Δν) first, from which we estimate the 21-cm power spectrum P(k⊥, k∥). The data here are much too small for a detection, and the aim is to demonstrate the capabilities of the estimator. We find that the estimated power spectrum is consistent with the expected foreground and noise behaviour. This demonstrates that this estimator correctly estimates the noise bias and subtracts this out to yield an unbiased estimate of the power spectrum. More than $47\%$ of the frequency channels had to be discarded from the data owing to radio-frequency interference, however the estimated power spectrum does not show any artifacts due to missing channels. Finally, we show that it is possible to suppress the foreground contribution by tapering the sky response at large angular separations from the phase center. We combine the k modes within a rectangular region in the ‘EoR window’ to obtain the spherically binned averaged dimensionless power spectra Δ2(k) along with the statistical error σ associated with the measured Δ2(k). The lowest k-bin yields Δ2(k) = (61.47)2 K2 at k = 1.59 Mpc−1, with σ = (27.40)2 K2. We obtain a 2 σ upper limit of (72.66)2 K2 on the mean squared HI 21-cm brightness temperature fluctuations at k = 1.59 Mpc−1.


New Astronomy ◽  
2017 ◽  
Vol 57 ◽  
pp. 94-103 ◽  
Author(s):  
Samir Choudhuri ◽  
Nirupam Roy ◽  
Somnath Bharadwaj ◽  
Sk. Saiyad Ali ◽  
Abhik Ghosh ◽  
...  

2021 ◽  
Author(s):  
Haipeng Zhu ◽  
Ming Huang ◽  
Chuanli Zhou

2017 ◽  
Vol 842 (1) ◽  
pp. 62 ◽  
Author(s):  
Vipin Sudevan ◽  
Pavan K. Aluri ◽  
Sarvesh Kumar Yadav ◽  
Rajib Saha ◽  
Tarun Souradeep

2014 ◽  
Vol 440 (2) ◽  
pp. 957-964 ◽  
Author(s):  
D. Molinari ◽  
A. Gruppuso ◽  
G. Polenta ◽  
C. Burigana ◽  
A. De Rosa ◽  
...  

2002 ◽  
Vol 571 (1) ◽  
pp. 191-205 ◽  
Author(s):  
Max Tegmark ◽  
Scott Dodelson ◽  
Daniel J. Eisenstein ◽  
Vijay Narayanan ◽  
Roman Scoccimarro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document