slow roll
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 122)

H-INDEX

48
(FIVE YEARS 9)

Author(s):  
Boris N Latosh ◽  
Andrej B Arbuzov ◽  
Andrej Nikitenko

Abstract One-loop effective potential of scalar-tensor gravity with a quartic scalar field self-interaction is evaluated up to first post-Minkowskian order. The potential develops an instability in the strong field regime which is expected from an effective theory. Depending on model parameters the instability region can be exponentially far in a strong field region. Possible applications of the model for inflationary scenarios are highlighted. It is shown that the model can enter the slow-roll regime with a certain set of parameters.


2022 ◽  
Vol 2022 (01) ◽  
pp. 012
Author(s):  
Ki-Young Choi ◽  
Jinn-Ouk Gong ◽  
Su-beom Kang ◽  
Rathul Nath Raveendran

Abstract We suggest a new method to reconstruct, within canonical single-field inflation, the inflaton potential directly from the primordial power spectrum which may deviate significantly from near scale-invariance. Our approach relies on a more generalized slow-roll approximation than the standard one, and can probe the properties of the inflaton potential reliably. We give a few examples for reconstructing potential and discuss the validity of our method.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yi-Peng Wu ◽  
Elena Pinetti ◽  
Kalliopi Petraki ◽  
Joseph Silk

Abstract The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.


2022 ◽  
Vol 21 (12) ◽  
pp. 317
Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Ertan Güdekli

Abstract The work reported in this paper demonstrates the cosmology of f(Q) gravity and the reconstruction of various associated parameters with different versions of holographic dark energy with generalized cut-offs, where Q = 6 H 2. The Universe is considered to be filled with viscous fluid characterized by a viscous pressure Π = – 3 H ξ, where ξ = ξ 0 + ξ 1 H + ξ 2 ( H ˙ + H 2 ) and H is the Hubble parameter. Considering the power law form of expansion, we have derived the expression of f(Q) under a non-viscous holographic framework and it is then extended to viscous cosmological settings with extended generalized holographic Ricci dark energy. The forms of f(Q) for both the cases are found to be monotonically increasing functions of Q. In the viscous holographic framework, f(Q) is reconstructed as a function of cosmic time t and is found to stay at a positive level with Nojiri-Odintsov cut-off. In these cosmological settings, the slow roll parameters are computed and a scope of exit from inflation and quasi-exponential expansion are found to be available. Finally, it is observed that warm inflationary expansion can be obtained from this model.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 500
Author(s):  
Elena Medina ◽  
Luis Martínez Alonso

We consider a generalized Starobinski inflationary model. We present a method for computing solutions as generalized asymptotic expansions, both in the kinetic dominance stage (psi series solutions) and in the slow roll stage (asymptotic expansions of the separatrix solutions). These asymptotic expansions are derived in the framework of the Hamilton-Jacobi formalism where the Hubble parameter is written as a function of the inflaton field. They are applied to determine the values of the inflaton field when the inflation period starts and ends as well as to estimate the corresponding amount of inflation. As a consequence, they can be used to select the appropriate initial conditions for determining a solution with a previously fixed amount of inflation.


2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


2021 ◽  
Vol 2021 (12) ◽  
pp. 027
Author(s):  
G. Rigopoulos ◽  
A. Wilkins

Abstract We use the Hamilton-Jacobi (H-J) formulation of stochastic inflation to describe the evolution of the inflaton during a period of Ultra-Slow Roll (USR), taking into account the field's velocity and its gravitational backreaction. We demonstrate how this formalism allows one to modify existing slow-roll (SR) formulae to be fully valid outside of the SR regime. We then compute the mass fraction, β, of Primordial Black Holes (PBHs) formed by a plateau in the inflationary potential. By fully accounting for the inflaton velocity as it enters the plateau, we find that PBHs are generically overproduced before the inflaton's velocity reaches zero, ruling out a period of free diffusion or even stochastic noise domination on the inflaton dynamics. We also examine a local inflection point and similarly conclude that PBHs are overproduced before entering a quantum diffusion dominated regime. We therefore surmise that the evolution of the inflaton is always predominantly classical with diffusion effects always subdominant. Both the plateau and the inflection point are characterized by a very sharp transition between the under- and over-production regimes. This can be seen either as severe fine-tunning on the inflationary production of PBHs, or as a very strong link between the fraction β and the shape of the potential and the plateau's extent.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Gabriel R. Bengochea ◽  
María Pía Piccirilli ◽  
Gabriel León

AbstractIn this work we analyze how the spectrum of primordial scalar perturbations is modified, within the emergent universe scenario, when a particular version of the Continuous Spontaneous Localization (CSL) model is incorporated as the generating mechanism of initial perturbations, providing also an explanation to the quantum-to-classical transition of such perturbations. On the other hand, a phase of super-inflation, prior to slow-roll inflation, is a characteristic feature of the emergent universe hypothesis. In recent works, it was shown that the super-inflation phase could generically induce a suppression of the temperature anisotropies of the CMB at large angular scales. We study here under what conditions the CSL maintains or modifies these characteristics of the emergent universe and their compatibility with the CMB observations.


2021 ◽  
Vol 2021 (12) ◽  
pp. 038
Author(s):  
Dhiraj Kumar Hazra ◽  
Daniela Paoletti ◽  
Ivan Debono ◽  
Arman Shafieloo ◽  
George F. Smoot ◽  
...  

Abstract We present constraints on inflationary dynamics and features in the primordial power spectrum of scalar perturbations using the Cosmic Microwave Background temperature, polarization data from Planck 2018 data release and updated likelihoods. We constrain the slow-roll dynamics using Hilltop Quartic Potential and Starobinsky R + R 2 model in the Einstein frame using the Planck 2018 binned Plik likelihood. Using the Hilltop as base potential, we construct Whipped Inflation potential to introduce suppression in the scalar power spectrum at large angular scales. We notice marginal (68% C.L.) preference of suppression from the large scale temperature angular power spectrum. However, large-scale E-mode likelihood based on high frequency instrument cross spectrum, does not support this suppression and in the combined data the preference towards the suppression becomes negligible. Based on the Hilltop and Starobinsky model, we construct the Wiggly Whipped Inflation potentials to introduce oscillatory features along with the suppression. We use unbinned data from the recently released CamSpec v12.5 likelihood which updates Planck 2018 results. We compare the Bayesian evidences of the feature models with their baseline slow-roll potentials. We find that the complete slow-roll baseline potential is moderately preferred against potentials which generate features. Compared to Planck 2015 PlikHM bin1 likelihood, we find that the significance of sharp features has decreased owing to the updates in the data analysis pipeline. We also compute the bispectra for the best fit candidates obtained from our analysis.


2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Matteo Forconi ◽  
William Giarè ◽  
Eleonora Di Valentino ◽  
Alessandro Melchiorri

Sign in / Sign up

Export Citation Format

Share Document