satellite mission
Recently Published Documents


TOTAL DOCUMENTS

716
(FIVE YEARS 247)

H-INDEX

40
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Chong Chen ◽  
Xianghui Xue ◽  
Dongsong Sun ◽  
Ruocan Zhao ◽  
Yuli Han ◽  
...  

2022 ◽  
Vol 26 (1) ◽  
pp. 35-54
Author(s):  
Fanny Lehmann ◽  
Bramha Dutt Vishwakarma ◽  
Jonathan Bamber

Abstract. The water budget equation describes the exchange of water between the land, ocean, and atmosphere. Being able to adequately close the water budget gives confidence in our ability to model and/or observe the spatio-temporal variations in the water cycle and its components. Due to advances in observation techniques, satellite sensors, and modelling, a number of data products are available that represent the components of water budget in both space and time. Despite these advances, closure of the water budget at the global scale has been elusive. In this study, we attempt to close the global water budget using precipitation, evapotranspiration, and runoff data at the catchment scale. The large number of recent state-of-the-art datasets provides a new evaluation of well-used datasets. These estimates are compared to terrestrial water storage (TWS) changes as measured by the Gravity Recovery And Climate Experiment (GRACE) satellite mission. We investigated 189 river basins covering more than 90 % of the continental land area. TWS changes derived from the water balance equation were compared against GRACE data using two metrics: the Nash–Sutcliffe efficiency (NSE) and the cyclostationary NSE. These metrics were used to assess the performance of more than 1600 combinations of the various datasets considered. We found a positive NSE and cyclostationary NSE in 99 % and 62 % of the basins examined respectively. This means that TWS changes reconstructed from the water balance equation were more accurate than the long-term (NSE) and monthly (cyclostationary NSE) mean of GRACE time series in the corresponding basins. By analysing different combinations of the datasets that make up the water balance, we identified data products that performed well in certain regions based on, for example, climatic zone. We identified that some of the good results were obtained due to the cancellation of errors in poor estimates of water budget components. Therefore, we used coefficients of variation to determine the relative quality of a data product, which helped us to identify bad combinations giving us good results. In general, water budget components from ERA5-Land and the Catchment Land Surface Model (CLSM) performed better than other products for most climatic zones. Conversely, the latest version of CLSM, v2.2, performed poorly for evapotranspiration in snow-dominated catchments compared, for example, with its predecessor and other datasets available. Thus, the nature of the catchment dynamics and balance between components affects the optimum combination of datasets. For regional studies, the combination of datasets that provides the most realistic TWS for a basin will depend on its climatic conditions and factors that cannot be determined a priori. We believe that the results of this study provide a road map for studying the water budget at catchment scale.


2022 ◽  
Author(s):  
Athanasios Pantazides ◽  
Derya Aksaray ◽  
Demoz Gebre-egziabher

2022 ◽  
Author(s):  
Ada-Rhodes Short ◽  
Prachi Dutta ◽  
Ben Gorr ◽  
Luke Bedrosian ◽  
Daniel Selva

2022 ◽  
Vol 924 (1) ◽  
pp. 8
Author(s):  
C. M. Espinoza ◽  
P. S. Moya ◽  
M. Stepanova ◽  
J. A. Valdivia ◽  
R. E. Navarro

Abstract Among the fundamental and most challenging problems of laboratory, space, and astrophysical plasma physics is to understand the relaxation processes of nearly collisionless plasmas toward quasi-stationary states and the resultant states of electromagnetic plasma turbulence. Recently, it has been argued that solar wind plasma β and temperature anisotropy observations may be regulated by kinetic instabilities such as the ion cyclotron, mirror, electron cyclotron, and firehose instabilities; and it has been argued that magnetic fluctuation observations are consistent with the predictions of the fluctuation–dissipation theorem, even far below the kinetic instability thresholds. Here, using in situ magnetic field and plasma measurements by the THEMIS satellite mission, we show that such regulation seems to occur also in the Earth’s magnetotail plasma sheet at the ion and electron scales. Regardless of the clear differences between the solar wind and the magnetotail environments, our results indicate that spontaneous fluctuations and their collisionless regulation are fundamental features of space and astrophysical plasmas, thereby suggesting the processes is universal.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Guohui Zhang ◽  
Xinhong Li ◽  
Gangxuan Hu ◽  
Zhibin Zhang ◽  
Jiping An ◽  
...  

Satellite mission planning is the basis and top-level work of space missions and the beginning of each space mission. Therefore, the scientific research of satellite mission planning is very important. By analyzing the existing research results, we can know that the research on task planning mainly focuses on three aspects: research objects, established model, and solution algorithm. Starting from these three aspects vertically and then horizontally, this paper comprehensively discusses the theoretical basis, application, and advantages and disadvantages of related technologies in the research literature in recent years. Finally, based on the research on satellite mission planning, this paper puts forward its own views on the future development direction and research focus.


2021 ◽  
Vol 2 (4) ◽  
pp. 1283-1301
Author(s):  
Corwin J. Wright ◽  
Richard J. Hall ◽  
Timothy P. Banyard ◽  
Neil P. Hindley ◽  
Isabell Krisch ◽  
...  

Abstract. Major sudden stratospheric warmings (SSWs) are extreme dynamical events where the usual strong westerly winds of the stratospheric polar vortex temporarily weaken or reverse and polar stratospheric temperatures rise by tens of kelvins over just a few days and remain so for an extended period. Via dynamical modification of the atmosphere below them, SSWs are believed to be a key contributor to extreme winter weather events at the surface over the following weeks. SSW-induced changes to the wind structure of the polar vortex have previously been studied in models and reanalyses and in localised measurements such as radiosondes and radars but have not previously been directly and systematically observed on a global scale because of the major technical challenges involved in observing winds from space. Here, we exploit novel observations from ESA's flagship Aeolus wind-profiler mission, together with temperature and geopotential height data from NASA's Microwave Limb Sounder and surface variables from the ERA5 reanalysis, to study the 2021 SSW. This allows us to directly examine wind and related dynamical changes associated with the January 2021 major SSW. Aeolus is the first satellite mission to systematically and directly acquire profiles of wind, and therefore our results represent the first direct measurements of SSW-induced wind changes at the global scale. We see a complete reversal of the zonal winds in the lower to middle stratosphere, with reversed winds in some geographic regions reaching down to the bottom 2 km of the atmosphere. These altered winds are associated with major changes to surface temperature patterns, and in particular we see a strong potential linkage from the SSW to extreme winter weather outbreaks in Greece and Texas during late January and early February. Our results (1) demonstrate the benefits of wind-profiling satellites such as Aeolus in terms of both their direct measurement capability and use in supporting reanalysis-driven interpretation of stratosphere–troposphere coupling signatures, (2) provide a detailed dynamical description of a major weather event, and (3) have implications for the development of Earth-system models capable of accurately forecasting extreme winter weather.


2021 ◽  
Vol 13 (24) ◽  
pp. 5033
Author(s):  
Pan Xiong ◽  
Dedalo Marchetti ◽  
Angelo De Santis ◽  
Xuemin Zhang ◽  
Xuhui Shen

Low Earth orbit satellites collect and study information on changes in the ionosphere, which contributes to the identification of earthquake precursors. Swarm, the European Space Agency three-satellite mission, has been launched to monitor the Earth geomagnetic field, and has successfully shown that in some cases it is able to observe many several ionospheric perturbations that occurred as a result of large earthquake activity. This paper proposes the SafeNet deep learning framework for detecting pre-earthquake ionospheric perturbations. We trained the proposed model using 9017 recent (2014–2020) independent earthquakes of magnitude 4.8 or greater, as well as the corresponding 7-year plasma and magnetic field data from the Swarm A satellite, and excellent performance has been achieved. In addition, the influence of different model inputs and spatial window sizes, earthquake magnitudes, and daytime or nighttime was explored. The results showed that for electromagnetic pre-earthquake data collected within a circular region of the epicenter and with a Dobrovolsky-defined radius and input window size of 70 consecutive data points, nighttime data provided the highest performance in discriminating pre-earthquake perturbations, yielding an F1 score of 0.846 and a Matthews correlation coefficient of 0.717. Moreover, SafeNet performed well in identifying pre-seismic ionospheric anomalies with increasing earthquake magnitude and unbalanced datasets. Hypotheses on the physical causes of earthquake-induced ionospheric perturbations are also provided. Our results suggest that the performance of pre-earthquake ionospheric perturbation identification can be significantly improved by utilizing SafeNet, which is capable of detecting precursor effects within electromagnetic satellite data.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ken Ganga ◽  
Michele Maris ◽  
Mathieu Remazeilles ◽  

2021 ◽  
Vol 162 (6) ◽  
pp. 292
Author(s):  
Brett C. Addison ◽  
Emil Knudstrup ◽  
Ian Wong ◽  
Guillaume Hébrard ◽  
Patrick Dorval ◽  
...  

Abstract We present the discovery of a highly irradiated and moderately inflated ultrahot Jupiter, TOI-1431b/MASCARA-5 b (HD 201033b), first detected by NASA’s Transiting Exoplanet Survey Satellite mission (TESS) and the Multi-site All-Sky Camera (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K = 294.1 ± 1.1 m s−1. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of M p = 3.12 ± 0.18 M J (990 ± 60 M ⊕), an inflated radius of R p = 1.49 ± 0.05 R J (16.7 ± 0.6 R ⊕), and an orbital period of P = 2.650237 ± 0.000003 days. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V = 8.049 mag) and young ( 0.29 − 0.19 + 0.32 Gyr) Am type star with T eff = 7690 − 250 + 400 K, resulting in a highly irradiated planet with an incident flux of 〈 F 〉 = 7.24 − 0.64 + 0.68 × 109 erg s−1 cm−2 ( 5300 − 470 + 500 S ⊕ ) and an equilibrium temperature of T eq = 2370 ± 70 K. TESS photometry also reveals a secondary eclipse with a depth of 127 − 5 + 4 ppm as well as the full phase curve of the planet’s thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as T day = 3004 ± 64 K and T night = 2583 ± 63 K, the second hottest measured nightside temperature. The planet’s low day/night temperature contrast (∼420 K) suggests very efficient heat transport between the dayside and nightside hemispheres. Given the host star brightness and estimated secondary eclipse depth of ∼1000 ppm in the K band, the secondary eclipse is potentially detectable at near-IR wavelengths with ground-based facilities, and the planet is ideal for intensive atmospheric characterization through transmission and emission spectroscopy from space missions such as the James Webb Space Telescope and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey.


Sign in / Sign up

Export Citation Format

Share Document