temperature anisotropy
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 76)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 924 (2) ◽  
pp. L33
Author(s):  
C. Cattell ◽  
A. Breneman ◽  
J. Dombeck ◽  
E. Hanson ◽  
M. Johnson ◽  
...  

Abstract Using the Parker Solar Probe FIELDS bandpass-filter data and SWEAP electron data from Encounters 1 through 9, we show statistical properties of narrowband whistlers from ∼16 R s to ∼130 R s, and compare wave occurrence to electron properties including beta, temperature anisotropy, and heat flux. Whistlers are very rarely observed inside ∼28 R s (∼0.13 au). Outside 28 R s, they occur within a narrow range of parallel electron beta from ∼1 to 10, and with a beta-heat flux occurrence consistent with the whistler heat flux fan instability. Because electron distributions inside ∼30 R s display signatures of the ambipolar electric field, the lack of whistlers suggests that the modification of the electron distribution function associated with the ambipolar electric field or changes in other plasma properties must result in lower instability limits for the other modes (including the observed solitary waves and ion acoustic waves) that are observed close to the Sun. The lack of narrowband whistler-mode waves close to the Sun and in regions of either low (<0.1) or high (>10) beta is also significant for the understanding and modeling of the evolution of flare-accelerated electrons and the regulation of heat flux in astrophysical settings including other stellar winds, the interstellar medium, accretion disks, and the intragalaxy cluster medium.


2022 ◽  
Vol 924 (2) ◽  
pp. 52
Author(s):  
Mario Riquelme ◽  
Alvaro Osorio ◽  
Daniel Verscharen ◽  
Lorenzo Sironi

Abstract Using 2D particle-in-cell plasma simulations, we study electron acceleration by temperature anisotropy instabilities, assuming conditions typical of above-the-loop-top sources in solar flares. We focus on the long-term effect of T e,⊥ > T e,∥ instabilities by driving the anisotropy growth during the entire simulation time through imposing a shearing or a compressing plasma velocity (T e,⊥ and T e,∥ are the temperatures perpendicular and parallel to the magnetic field). This magnetic growth makes T e,⊥/T e,∥ grow due to electron magnetic moment conservation, and amplifies the ratio ω ce/ω pe from ∼0.53 to ∼2 (ω ce and ω pe are the electron cyclotron and plasma frequencies, respectively). In the regime ω ce/ω pe ≲ 1.2–1.7, the instability is dominated by oblique, quasi-electrostatic modes, and the acceleration is inefficient. When ω ce/ω pe has grown to ω ce/ω pe ≳ 1.2–1.7, electrons are efficiently accelerated by the inelastic scattering provided by unstable parallel, electromagnetic z modes. After ω ce/ω pe reaches ∼2, the electron energy spectra show nonthermal tails that differ between the shearing and compressing cases. In the shearing case, the tail resembles a power law of index α s ∼ 2.9 plus a high-energy bump reaching ∼300 keV. In the compressing runs, α s ∼ 3.7 with a spectral break above ∼500 keV. This difference can be explained by the different temperature evolutions in these two types of simulations, suggesting that a critical role is played by the type of anisotropy driving, ω ce/ω pe, and the electron temperature in the efficiency of the acceleration.


2022 ◽  
Vol 924 (1) ◽  
pp. 8
Author(s):  
C. M. Espinoza ◽  
P. S. Moya ◽  
M. Stepanova ◽  
J. A. Valdivia ◽  
R. E. Navarro

Abstract Among the fundamental and most challenging problems of laboratory, space, and astrophysical plasma physics is to understand the relaxation processes of nearly collisionless plasmas toward quasi-stationary states and the resultant states of electromagnetic plasma turbulence. Recently, it has been argued that solar wind plasma β and temperature anisotropy observations may be regulated by kinetic instabilities such as the ion cyclotron, mirror, electron cyclotron, and firehose instabilities; and it has been argued that magnetic fluctuation observations are consistent with the predictions of the fluctuation–dissipation theorem, even far below the kinetic instability thresholds. Here, using in situ magnetic field and plasma measurements by the THEMIS satellite mission, we show that such regulation seems to occur also in the Earth’s magnetotail plasma sheet at the ion and electron scales. Regardless of the clear differences between the solar wind and the magnetotail environments, our results indicate that spontaneous fluctuations and their collisionless regulation are fundamental features of space and astrophysical plasmas, thereby suggesting the processes is universal.


Author(s):  
Debing Zhang ◽  
Limin Yu ◽  
Erbing Xue ◽  
Xianmei Zhang ◽  
Haijun Ren

Abstract In the nowadays and future fusion devices such as ITER and CFETR, as the use of various heating schemes, the parallel and perpendicular temperature of plasmas can be different; this temperature anisotropy may have significant effects on the turbulence. In this work, the anomalous transport driven by the ion temperature gradient instability is investigated in an anisotropic deuterium-tritium (D-T) plasma. The anisotropic factor $\alpha$, defined as the ratio of perpendicular temperature to parallel temperature, is introduced to describe the temperature anisotropy in the equilibrium distribution function of D. The linear dispersion relation in local kinetic limit is derived, and then numerically evaluated to study the dependence of mode frequency on the anisotropic factor $\alpha$ and the proportion for T particle $\vareT$ by choosing three sets of typical parameters, denoted as the cyclone base case (CBC), ITER and CFETR cases. Based on the linear results, the mixing length model approximation is adopted to analyze the quasi-linear particle and energy fluxes for D and T. It is found that choosing small $\alpha$ and large $\vareT$ is beneficial for the confinement of particle and energy for D and T. This work may be helpful for the estimation of turbulent transport level in the ITER and CFETR devices.


2021 ◽  
Vol 19 (11) ◽  
pp. 116-125
Author(s):  
Murad M. Kadhim ◽  
Qusay A. Abbas

In this work, an experimental study was conducted about the effect of gas pressure on the growth rate of the mirror instability produced in hollow electrodes discharge (HED) plasma in two regions: inter-electrodes gap and internal cathode cavity, by optical emission spectroscopy. Optical emission spectroscopy measurements, at different gas pressures in two regions under study, show that the electron number density (ne) increase with increasing gas pressure from 0.04 to 0.2 Torr. While the electron temperature (Te) decrease with increased gas pressure. In addition, the growth rate increase with increasing electron temperature anisotropy in both regions.


2021 ◽  
Author(s):  
Aleksandr Y. Ukhorskiy ◽  
Kareem A. Sorathia ◽  
Viacheslav G. Merkin ◽  
Chris Crabtree ◽  
Alex C. Fletcher ◽  
...  

Abstract Plasma convection in the Earth’s magnetosphere from the distant magnetotail to the inner magnetosphere occurs largely in the form of mesoscale flows, i.e., discrete enhancements in the plasma flow with sharp dipolarizations of magnetic field. Recent spacecraft observations suggest that the dipolarization flows are associated with a wide range of kinetic processes such as kinetic Alfvén waves, whistler chorus waves, and nonlinear time-domain structures. In this paper we explore how mesoscale dipolarization flows produce suprathermal electron instabilities, thus providing free energy for the generation of the observed kinetic waves and structures. We employ three-dimensional test-particle simulations of electron dynamics one-way-coupled to a global magnetospheric model. The simulations show a rapid growth of interchanging regions of parallel and perpendicular electron temperature anisotropies distributed along the magnetic terrain formed around the dipolarization flows. Unencumbered in test-particle simulations, a rapid growth of velocity-space anisotropies in the collisionless magnetotail plasma is expected to be curbed by the generation of plasma waves. The results are compared with in situ observations of an isolated dipolarization flow at one of the spacecraft of the Magnetospheric Multiscale Mission, that show strong VLF wave activity alternating between broad-band wave activity and whistler waves. With estimated spatial extent being similar to the characteristic size of temperature anisotropy patches in our test-particle simulations, the observed bursts of VLF wave activity are likely to be produced by the parallel and perpendicular electron energy anisotropies driven by the dipolarization flow, as suggested by our results.


2021 ◽  
Vol 922 (2) ◽  
pp. L35
Author(s):  
A. F. A. Bott ◽  
L. Arzamasskiy ◽  
M. W. Kunz ◽  
E. Quataert ◽  
J. Squire

Abstract Using a hybrid-kinetic particle-in-cell simulation, we study the evolution of an expanding, collisionless, magnetized plasma in which strong Alfvénic turbulence is persistently driven. Temperature anisotropy generated adiabatically by the plasma expansion (and consequent decrease in the mean magnetic-field strength) gradually reduces the effective elasticity of the field lines, causing reductions in the linear frequency and residual energy of the Alfvénic fluctuations. In response, these fluctuations modify their interactions and spatial anisotropy to maintain a scale-by-scale “critical balance” between their characteristic linear and nonlinear frequencies. Eventually the plasma becomes unstable to kinetic firehose instabilities, which excite rapidly growing magnetic fluctuations at ion-Larmor scales. The consequent pitch-angle scattering of particles maintains the temperature anisotropy near marginal stability, even as the turbulent plasma continues to expand. The resulting evolution of parallel and perpendicular temperatures does not satisfy double-adiabatic conservation laws, but is described accurately by a simple model that includes anomalous scattering. Our results have implications for understanding the complex interplay between macro- and microscale physics in various hot, dilute, astrophysical plasmas, and offer predictions concerning power spectra, residual energy, ion-Larmor-scale spectral breaks, and non-Maxwellian features in ion distribution functions that may be tested by measurements taken in high-beta regions of the solar wind.


2021 ◽  
Vol 922 (1) ◽  
pp. L18
Author(s):  
F. Pucci ◽  
M. Viviani ◽  
F. Valentini ◽  
G. Lapenta ◽  
W. H. Matthaeus ◽  
...  

Abstract We demonstrate an efficient mechanism for generating magnetic fields in turbulent, collisionless plasmas. By using fully kinetic, particle-in-cell simulations of an initially nonmagnetized plasma, we inspect the genesis of magnetization, in a nonlinear regime. The complex motion is initiated via a Taylor–Green vortex, and the plasma locally develops strong electron temperature anisotropy, due to the strain tensor of the turbulent flow. Subsequently, in a domino effect, the anisotropy triggers a Weibel instability, localized in space. In such active wave–particle interaction regions, the seed magnetic field grows exponentially and spreads to larger scales due to the interaction with the underlying stirring motion. Such a self-feeding process might explain magnetogenesis in a variety of astrophysical plasmas, wherever turbulence is present.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012019
Author(s):  
Kumari Neeta Shukla ◽  
Devi Singh ◽  
R S Pandey

Abstract Whistlers are believed to be generated by its own and responsible to evolve dynamical properties of magnetized planetary environment. Growing whistler instability can cause other uncertainties in the magnetosphere and evident to be generated by mean of injection events and temperature variance in plasma environment. In this paper the empirical dispersion relation has developed for parallel propagating whistler mode instability in an infinite saturnian magneto plasma in the presence of perpendicular electric field for ring distribution function having non-monotonous nature. Method of characteristics solutions alongside kinetic approach found to be most suitable in order to achieve perturbed plasma states. The perturbed and unperturbed particle trajectories have taken into consideration to determine perturbed distribution function. A remarkable growth rate expression with added hot plasma injection has been calculated in inner magnetosphere near 6.18 Rs. The results obtained using demonstrative value of the parameters suited to the Saturnian magnetosphere have been computed and discussed. Pressure (Temperature) anisotropy is found to be a peculiar source of free energy for whistler mode instability. The AC frequency irrespective of its magnitude, affects the growth rate significantly. The bulk of energetic hot electrons injection influences the growth rate by increasing its peak value. The result obtained provide the important view of wave particle interaction and useful to analyze the VLF emissions observed over a wide frequency range.


Sign in / Sign up

Export Citation Format

Share Document