A new condition for a graph having conflict free connection number 2

2021 ◽  
Vol 66 (1) ◽  
pp. 25-29
Author(s):  
Diep Pham Ngoc

A path in an edge-coloured graph is called conflict-free if there is a colour used on exactly one of its edges. An edge-coloured graph is said to be conflict-free connected if any two distinct vertices of the graph are connected by a conflict-free path. The conflict-free connection number, denoted by cf c(G), is the smallest number of colours needed in order to make G conflict-free connected. In this paper, we give a new condition to show that a connected non-complete graph G having cf c(G) = 2. This is an extension of a result by Chang et al. [1].

2018 ◽  
Vol 10 (05) ◽  
pp. 1850059 ◽  
Author(s):  
Zhenzhen Li ◽  
Baoyindureng Wu

A path in a vertex-colored graph is called conflict-free if there is a color used on exactly one of its vertices. A vertex-colored graph is said to be conflict-free vertex-connected if any two vertices of the graph are connected by a conflict-free path. The conflict-free vertex-connection number, denoted by [Formula: see text], is defined as the smallest number of colors required to make [Formula: see text] conflict-free vertex-connected. Li et al. [Conflict-free vertex-connections of graphs, preprint (2017), arXiv:1705.07270v1[math.CO]] conjectured that for a connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. We confirm that the conjecture is true and poses two relevant conjectures.


1993 ◽  
Vol 3 (7) ◽  
pp. 1649-1659
Author(s):  
Mohammad A. Tafreshi ◽  
Stefan Csillag ◽  
Zou Wei Yuan ◽  
Christian Bohm ◽  
Elisabeth Lefèvre ◽  
...  

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


1968 ◽  
Vol 22 (4) ◽  
pp. 261-262
Author(s):  
M.P. Navalkar ◽  
K. Chandramoleshwar ◽  
D.V.S. Ramkrishna

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


Sign in / Sign up

Export Citation Format

Share Document