scholarly journals Characterizations of Three (2020) Introduced Discrete Distributions

Author(s):  
Shirin Nezampour ◽  
G. G. Hamedani

The problem of characterizing a probability distribution is an important problem which has attracted the attention of many researchers in the recent years. To understand the behavior of the data obtained through a given process, we need to be able to describe this behavior via its approximate probability law. This, however, requires to establish conditions which govern the required probability law. In other words we need to have certain conditions under which we may be able to recover the probability law of the data. So, characterization of a distribution plays an important role in applied sciences, where an investigator is vitally interested to find out if their model follows the selected distribution. In this short note, certain characterizations of three recently introduced discrete distributions are presented to complete, in some way, the works ofHussain(2020), Eliwa et al.(2020) and Hassan et al.(2020).

Author(s):  
Jang-Der Jeng ◽  
Yuan Kang ◽  
Yeon-Pun Chang ◽  
Shyh-Shyong Shyr

The Duffing oscillator is well-known models of nonlinear system, with applications in many fields of applied sciences and engineering. In this paper, a response integration algorithm is proposed to analyze high-order harmonic and chaotic motions in this oscillator for modeling rotor excitations. This method numerically integrates the distance between state trajectory and the origin in the phase plane during a specific period and predicted intervals with excitation periods. It provides a quantitative characterization of system responses and can replace the role of the traditional stroboscopic technique (Poincare´ section method) to observe bifurcations and chaos of the nonlinear oscillators. Due to the signal response contamination of system, thus it is difficult to identify the high-order responses of the subharmonic motion because of the sampling points on Poincare´ map too near each other. Even the system responses will be made misjudgments. Combining the capability of precisely identifying period and constructing bifurcation diagrams, the advantages of the proposed response integration method are shown by case studies. Applying this method, the effects of the change in the stiffness and the damping coefficients on the vibration features of a Duffing oscillator are investigated in this paper. From simulation results, it is concluded that the stiffness and damping of the system can effectively suppress chaotic vibration and reduce vibration amplitude.


2019 ◽  
Vol 69 (2) ◽  
pp. 453-468
Author(s):  
Demetrios P. Lyberopoulos ◽  
Nikolaos D. Macheras ◽  
Spyridon M. Tzaninis

Abstract Under mild assumptions the equivalence of the mixed Poisson process with mixing parameter a real-valued random variable to the one with mixing probability distribution as well as to the mixed Poisson process in the sense of Huang is obtained, and a characterization of each one of the above mixed Poisson processes in terms of disintegrations is provided. Moreover, some examples of “canonical” probability spaces admitting counting processes satisfying the equivalence of all above statements are given. Finally, it is shown that our assumptions for the characterization of mixed Poisson processes in terms of disintegrations cannot be omitted.


2019 ◽  
Vol 9 (18) ◽  
pp. 3869 ◽  
Author(s):  
Clifford J. Lissenden

The propagation of ultrasonic guided waves in solids is an important area of scientific inquiry due primarily to their practical applications for the nondestructive characterization of materials, such as nondestructive inspection, quality assurance testing, structural health monitoring, and for achieving material state awareness [...]


2014 ◽  
Vol 57 (2) ◽  
pp. 424-430 ◽  
Author(s):  
Piotr M. Sołtan ◽  
Ami Viselter

AbstractIn this short note we introduce a notion called quantum injectivity of locally compact quantum groups, and prove that it is equivalent to amenability of the dual. In particular, this provides a new characterization of amenability of locally compact groups.


1972 ◽  
Vol 9 (02) ◽  
pp. 457-461 ◽  
Author(s):  
M. Ahsanullah ◽  
M. Rahman

A necessary and sufficient condition based on order statistics that a positive random variable having an absolutely continuous probability distribution (with respect to Lebesgue measure) will be exponential is given.


1994 ◽  
Vol 31 (3) ◽  
pp. 834-840 ◽  
Author(s):  
Armand M. Makowski

In this short note, we present a simple characterization of the increasing convex ordering on the set of probability distributions on ℝ. We show its usefulness by providing a very short proof of a comparison result for M/GI/1 queues due to Daley and Rolski, and obtained by completely different means.


2004 ◽  
Vol 41 (A) ◽  
pp. 321-332 ◽  
Author(s):  
Paul Glasserman ◽  
David D. Yao

An optimal coupling is a bivariate distribution with specified marginals achieving maximal correlation. We show that optimal couplings are totally positive and, in fact, satisfy a strictly stronger condition we call the nonintersection property. For discrete distributions we illustrate the equivalence between optimal coupling and a certain transportation problem. Specifically, the optimal solutions of greedily-solvable transportation problems are totally positive, and even nonintersecting, through a rearrangement of matrix entries that results in a Monge sequence. In coupling continuous random variables or random vectors, we exploit a characterization of optimal couplings in terms of subgradients of a closed convex function to establish a generalization of the nonintersection property. We argue that nonintersection is not only stronger than total positivity, it is the more natural concept for the singular distributions that arise in coupling continuous random variables.


Sign in / Sign up

Export Citation Format

Share Document