scholarly journals A New One-term Approximation to the Standard Normal Distribution

Author(s):  
Ahmad Hanandeh ◽  
Omar Eidous

This paper deals with a new, simple one-term approximation to the cumulative distribution function (c.d.f) of the standard normal distribution which does not have closed form representation. The accuracy of the proposed approximation measured using maximum absolute error (M.S.E) and the same criteria is used to compare this approximation with the existing one-term approximation approaches available in the literature. Our approximation has a maximum absolute error of about 0.0016 and this accuracy is sufficient for most practical applications.

2018 ◽  
Vol 16 (1) ◽  
pp. 16-22
Author(s):  
Marcin Lawnik

AbstractIn (Lawnik M., Generation of numbers with the distribution close to uniform with the use of chaotic maps, In: Obaidat M.S., Kacprzyk J., Ören T. (Ed.), International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH) (28-30 August 2014, Vienna, Austria), SCITEPRESS, 2014) Lawnik discussed a method of generating pseudo-random numbers from uniform distribution with the use of adequate chaotic transformation. The method enables the “flattening” of continuous distributions to uniform one. In this paper a inverse process to the above-mentioned method is presented, and, in consequence, a new manner of generating pseudo-random numbers from a given continuous distribution. The method utilizes the frequency of the occurrence of successive branches of chaotic transformation in the process of “flattening”. To generate the values from the given distribution one discrete and one continuous value of a random variable are required. The presented method does not directly involve the knowledge of the density function or the cumulative distribution function, which is, undoubtedly, a great advantage in comparison with other well-known methods. The described method was analysed on the example of the standard normal distribution.


Author(s):  
Hime Oliveira

This work addresses the problem of sampling from Gaussian probability distributions by means of uniform samples obtained deterministically and directly from space-filling curves (SFCs), a purely topological concept. To that end, the well-known inverse cumulative distribution function method is used, with the help of the probit function,which is the inverse of the cumulative distribution function of the standard normal distribution. Mainly due to the central limit theorem, the Gaussian distribution plays a fundamental role in probability theory and related areas, and that is why it has been chosen to be studied in the present paper. Numerical distributions (histograms) obtained with the proposed method, and in several levels of granularity, are compared to the theoretical normal PDF, along with other already established sampling methods, all using the cited probit function. Final results are validated with the Kullback-Leibler and two other divergence measures, and it will be possible to draw conclusions about the adequacy of the presented paradigm. As is amply known, the generation of uniform random numbers is a deterministic simulation of randomness using numerical operations. That said, sequences resulting from this kind of procedure are not truly random. Even so, and to be coherent with the literature, the expression ”random number” will be used along the text to mean ”pseudo-random number”.


2021 ◽  
pp. 000806832097948
Author(s):  
Nitis Mukhopadhyay

A two-sample pivot for comparing the means from independent populations is well known. For large sample sizes, the distribution of the pivot is routinely approximated by a standard normal distribution. The question is about the thinking process that may guide one to rationalize invoking the asymptotic theory. In this pedagogical piece, we put forward soft statistical arguments to make users feel more at ease by suitably indexing the sample sizes from a practical standpoint that would allow a valid interpretation and understanding of pointwise convergence of the pivot's cumulative distribution function (c.d.f.) to the c.d.f. of a standard normal random variable.


1986 ◽  
Vol 29 (2) ◽  
pp. 167-176 ◽  
Author(s):  
J. P. McClure ◽  
R. Wong

AbstractAn asymptotic approximation is obtained, as k → ∞, for the integralwhere Φ is the cumulative distribution function for a standard normal random variable, and L is a positive constant. The problem is motivated by a question in statistics, and an outline of'the application is given. Similar methods may be used to approximate other integrals involving the normal distribution.


2019 ◽  
Vol 101 (1) ◽  
pp. 157-162
Author(s):  
YILUN WEI ◽  
BO WU ◽  
QIJIN WANG

We generalise Sidel’nikov’s theorem from binary codes to $q$-ary codes for $q>2$. Denoting by $A(z)$ the cumulative distribution function attached to the weight distribution of the code and by $\unicode[STIX]{x1D6F7}(z)$ the standard normal distribution function, we show that $|A(z)-\unicode[STIX]{x1D6F7}(z)|$ is bounded above by a term which tends to $0$ when the code length tends to infinity.


2015 ◽  
Vol 38 (2) ◽  
pp. 371-384 ◽  
Author(s):  
Sukru Acitas ◽  
Birdal Senoglu ◽  
Olcay Arslan

<p>The alpha-skew normal (ASN) distribution has been proposed recently in the literature by using standard normal distribution and a skewing approach. Although ASN distribution is able to model both skew and bimodal data, it is shortcoming when data has thinner or thicker tails than normal. Therefore, we propose an alpha-skew generalized t (ASGT) by using the generalized t (GT) distribution and a new skewing procedure. From this point of view, ASGT can be seen as an alternative skew version of GT distribution. However, ASGT differs from the previous skew versions of GT distribution since it is able to model bimodal data sest as well as it nests most commonly used density functions. In this paper, moments and maximum likelihood estimation of the parameters of ASGT distribution are given. Skewness and kurtosis measures are derived based on the first four noncentral moments. The cumulative distribution function (cdf) of ASGT distribution is also obtained. In the application part of the study, two real life problems taken from the literature are modeled by using ASGT distribution.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Hector Vazquez-Leal ◽  
Roberto Castaneda-Sheissa ◽  
Uriel Filobello-Nino ◽  
Arturo Sarmiento-Reyes ◽  
Jesus Sanchez Orea

The integral of the standard normal distribution function is an integral without solution and represents the probability that an aleatory variable normally distributed has values between zero and . The normal distribution integral is used in several areas of science. Thus, this work provides an approximate solution to the Gaussian distribution integral by using the homotopy perturbation method (HPM). After solving the Gaussian integral by HPM, the result served as base to solve other integrals like error function and the cumulative distribution function. The error function is compared against other reported approximations showing advantages like less relative error or less mathematical complexity. Besides, some integrals related to the normal (Gaussian) distribution integral were solved showing a relative error quite small. Also, the utility for the proposed approximations is verified applying them to a couple of heat flow examples. Last, a brief discussion is presented about the way an electronic circuit could be created to implement the approximate error function.


Sign in / Sign up

Export Citation Format

Share Document