scholarly journals Convective Instability in Binary Nanofluids for Absorption Phenomenon with Cross Diffusions and Internal Heat Source

2021 ◽  
Vol 39 (4) ◽  
pp. 1047-1056
Author(s):  
Sravan N. Gaikwad ◽  
Dnyaneshwar M. Surwase
2001 ◽  
Vol 124 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Sherin M. Alex ◽  
Prabhamani R. Patil

The convective instability of a horizontal fluid-saturated anisotropic porous layer, with internal heat source and inclined temperature gradient, subject to a gravity field varying with distance in the layer, is investigated. A linear stability analysis is performed and the resulting eigenvalue problem solved using a Galerkin technique. In the absence of an inclined temperature gradient, an increase in the variable gravity parameter above −1 destabilizes the system. In its presence interesting developments occur. An increase in the heat generation destabilizes the system when the variable gravity parameter is nonnegative. When it is negative the opposite effect is seen.


2013 ◽  
Vol 5 (3) ◽  
pp. 200-213
Author(s):  
Gangadharaiah Y. H. ◽  
Suma S. P.

In the present study, onset of stationary Rayleigh-Benard convective instability in a fluid layer, with internal heating and thermally dependent viscosity has been investigated by means of linear stability analysis. The dependence of viscosity is assumed to be exponential. The resulting eigen value problem is solved using a regular perturbation technique with wave number a as a perturbation parameter. The viscosity parameter and the presence of internal heat source play a decisive role on the stability characteristics of the system. It is observed that both stabilizing and destabilizing factors can be enhanced because of the simultaneous presence of a volumetric heat source and variable viscosity so that a more precise control (suppress or augment) of thermal convective instability in a fluid layer is possible.


Author(s):  
Carolina Palma Naveira Cotta ◽  
Kelvin Chen ◽  
Christopher Tostado ◽  
Philippe Rollemberg d'Egmont ◽  
Fernando Duda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document