scholarly journals Optimization method for designing optical elements with an extended light source

2020 ◽  
Vol 44 (5) ◽  
pp. 712-720
Author(s):  
E.V. Byzov ◽  
S.V. Kravchenko ◽  
M.A. Moiseev ◽  
L.L. Doskolovich

A method for designing an optical element with two free-form surfaces generating a prescribed illuminance distribution in the case of an extended light source is considered. The method is based on the representation of the optical element surfaces by bicubic splines and on the subsequent optimization of their parameters using a quasi-Newton method implemented in the Matlab software. To calculate the merit function, a version of the ray tracing method is proposed. Using the proposed method, an optical element with record characteristics was designed: the ratio of the element height to the source size is 1.6; luminous efficiency is 89.1 %; uniformity of the generated distribution (the ratio of the minimum and average illuminance) in a given square region is 0.92.

Author(s):  
Zezhong C. Chen ◽  
Gang Liu

As important components of gas turbine engines, axial-flow compressors have been improved with a more complex and accurate airfoil design to meet high aerodynamic requirements; specifically, the pressure and suction surfaces of the airfoils (or blades) are now represented with free-form surfaces in CAD software systems. Since quality of the blades affects efficiency of the engines and safety of the aircrafts, some types of compressors are produced with the blades and the hub as a single piece on 4-axis CNC milling machines. However, it is still quite challenging to automatically determine cutter sizes and orientations without gouging and interference during the 4-axis milling, because the geometric shape of the blades is complex and the blades overlap with each other. As a result, the established method of determining tool size and orientation in industry is by trial and error in a repetitive process of selecting cutters and planning tool-paths with CAM systems. To address this problem, a novel approach is proposed to automatically determine cutter sizes and orientations for 4-axis milling of the axial-flow compressors blades without gouging and interference. The main contribution of this work is that (1) a mathematical model for optimizing cutter sizes in 4-axis milling is established; and (2) by applying a global optimization method — the particle swarm optimization method — to this model, the maximum allowable size of a cutter and its corresponding orientation can be found at each cutter-contact (CC) point on the surface being machined. Therefore, all the maximum allowable sizes of cutters for all the CC points and the corresponding cutter orientations can be computed. A group of standard cutters are then selected; each of which can sweep particular CC points without damaging the compressor. Since it is efficient and reliable, this newly proposed approach can be directly implemented in commercial CAD/CAM software systems to benefit the manufacturing industry.


2012 ◽  
Vol 217-219 ◽  
pp. 1646-1649 ◽  
Author(s):  
Chia Jung Chang ◽  
Choung Lii Chao ◽  
Wen Chen Chou ◽  
Yu Kun Chen ◽  
Kung Jeng Ma ◽  
...  

Driven by the huge market demand, the glass lenses made of various optical glasses are required to be more diversified in sizes/shapes, to have better form accuracy/ surface roughness, to be more environmental durable, and to be more competitive in price. In comparison to conventional refractive lens, diffractive lens (diffractive optical element, DOE) has the advantages of being thinner and lighter, and is widely used in optical systems such as lighting and photovoltaic systems. Glass moulding process(GMP) is regarded as a very promising technique for mass producing high precision optical components such as spherical/ aspheric glass lenses and free-form optics. However, only a handful of materials can sustain the chemical reaction, mechanical stress and temperature involved in the glass moulding process. Besides, almost all of these mould materials are classified as hard-to-machine materials. This makes the machining of these materials to sub-micrometer form accuracy and nanometer surface finish a rather tough and expensive task. As a result, making service life of mould longer has played a critical part in the GMP industry. The excessive stress and/or temperature involved in the moulding process are amongst the main reasons for pre-matured mould failure. This research aimed to analyze the stress/strain conditions and the obtained dimensional accuracy under various molding parameters by simulations. Molding experiments were subsequently carried out to verify the simulated results. A glass DOE of 14.8 mm in diameter and 3.36 mm in thickness are successfully produced in this research and the difference between the simulated and the molded DOE is around 15μm.


2020 ◽  
Vol 28 (17) ◽  
pp. 24431 ◽  
Author(s):  
Egor V. Byzov ◽  
Sergey V. Kravchenko ◽  
Mikhail A. Moiseev ◽  
Evgeni A. Bezus ◽  
Leonid L. Doskolovich

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Goncharsky ◽  
Anton Goncharsky ◽  
Dmitry Melnik ◽  
Svyatoslav Durlevich

AbstractThis paper focuses on the development of flat diffractive optical elements (DOEs) for protecting banknotes, documents, plastic cards, and securities against counterfeiting. A DOE is a flat diffractive element whose microrelief, when illuminated by white light, forms a visual image consisting of several symbols (digits or letters), which move across the optical element when tilted. The images formed by these elements are asymmetric with respect to the zero order. To form these images, the microrelief of a DOE must itself be asymmetric. The microrelief has a depth of ~ 0.3 microns and is shaped with an accuracy of ~ 10–15 nm using electron-beam lithography. The DOEs developed in this work are securely protected against counterfeiting and can be replicated hundreds of millions of times using standard equipment meant for the mass production of relief holograms.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mehwish Bari ◽  
Ghulam Mustafa ◽  
Abdul Ghaffar ◽  
Kottakkaran Sooppy Nisar ◽  
Dumitru Baleanu

AbstractSubdivision schemes (SSs) have been the heart of computer-aided geometric design almost from its origin, and several unifications of SSs have been established. SSs are commonly used in computer graphics, and several ways were discovered to connect smooth curves/surfaces generated by SSs to applied geometry. To construct the link between nonstationary SSs and applied geometry, in this paper, we unify the interpolating nonstationary subdivision scheme (INSS) with a tension control parameter, which is considered as a generalization of 4-point binary nonstationary SSs. The proposed scheme produces a limit surface having $C^{1}$ C 1 smoothness. It generates circular images, spirals, or parts of conics, which are important requirements for practical applications in computer graphics and geometric modeling. We also establish the rules for arbitrary topology for extraordinary vertices (valence ≥3). The well-known subdivision Kobbelt scheme (Kobbelt in Comput. Graph. Forum 15(3):409–420, 1996) is a particular case. We can visualize the performance of the unified scheme by taking different values of the tension parameter. It provides an exact reproduction of parametric surfaces and is used in the processing of free-form surfaces in engineering.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Diego Andrade ◽  
Ved Vyas ◽  
Kenji Shimada

While modern computer aided design (CAD) systems currently offer tools for generating simple patterns, such as uniformly spaced rectangular or radial patterns, these tools are limited in several ways: (1) They cannot be applied to free-form geometries used in industrial design, (2) patterning of these features happens within a single working plane and is not applicable to highly curved surfaces, and (3) created features lack anisotropy and spatial variations, such as changes in the size and orientation of geometric features within a given region. In this paper, we introduce a novel approach for creating anisotropic patterns of geometric features on free-form surfaces. Complex patterns are generated automatically, such that they conform to the boundary of any specified target region. Furthermore, user input of a small number of geometric features (called “seed features”) of desired size and orientation in preferred locations could be specified within the target domain. These geometric seed features are then transformed into tensors and used as boundary conditions to generate a Riemannian metric tensor field. A form of Laplace's heat equation is used to produce the field over the target domain, subject to specified boundary conditions. The field represents the anisotropic pattern of geometric features. This procedure is implemented as an add-on for a commercial CAD package to add geometric features to a target region of a three-dimensional model using two set operations: union and subtraction. This method facilitates the creation of a complex pattern of hundreds of geometric features in less than 5 min. All the features are accessible from the CAD system, and if required, they are manipulable individually by the user.


Sign in / Sign up

Export Citation Format

Share Document