Nonlinear Self-Adjointness and Conservation Laws of KdV Equation with Linear Damping Force

2017 ◽  
Vol 5 (3) ◽  
pp. 89-94 ◽  
Author(s):  
Muhammad Nasir Ali ◽  
Shahid Ali ◽  
Syed Muhammad Husnine ◽  
Turgut Ak
2011 ◽  
Vol 80-81 ◽  
pp. 714-718
Author(s):  
Yun Kai Gao ◽  
Da Wei Gao

The seal deformation of automotive door is caused by the door compression forces, including non-linear elastic force and non-linear damping force. The working principles of them are analyzed and a new simplified analysis model is built. Based on the Bernoulli equation and the law of conservation of mass, the mathematical models are established to calculate energy consumption of the seal system. According to the analysis results, the energy consumption of non-linear elastic force and non-linear damping force are respectively 84% and 16% of the total energy consumption of the seal system. At last, the calculation data is compared with the test data and the error is less than 5%, so the calculation method proposed in this paper is observed to be accurate.


2020 ◽  
Vol 13 (10) ◽  
pp. 2691-2701
Author(s):  
María-Santos Bruzón ◽  
◽  
Elena Recio ◽  
Tamara-María Garrido ◽  
Rafael de la Rosa

2012 ◽  
Vol 13 (6) ◽  
pp. 2692-2700 ◽  
Author(s):  
M.L. Gandarias ◽  
M.S. Bruzón

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1987
Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

The Frobenius KDV equation and the Frobenius KP equation are introduced, and the Frobenius Kompaneets equation, Frobenius Burgers equation and Frobenius Harry Dym equation are constructed by taking values in a commutative subalgebra Z2ε in the paper. The five equations are selected as examples to help us study the self-adjointness of Frobenius type equations, and we show that the first two equations are quasi self-adjoint and the last three equations are nonlinear self-adjointness. It follows that we give the symmetries of the Frobenius KDV and the Frobenius KP equation in order to construct the corresponding conservation laws.


Sign in / Sign up

Export Citation Format

Share Document