scholarly journals Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity

Aging ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 4093-4106 ◽  
Author(s):  
Wendan Xu ◽  
Lingjun Li ◽  
Jingwen Sun ◽  
Songyue Zhu ◽  
Zhengjie Yan ◽  
...  

2018 ◽  
Vol 110 (4) ◽  
pp. e378-e379
Author(s):  
W. Xu ◽  
Z. Yan ◽  
L. Gao ◽  
C. Mao ◽  
Y. Cui


Author(s):  
Lu Liu ◽  
Jie Huang ◽  
Anlan He ◽  
Shuai Zhou ◽  
Qianneng Lu ◽  
...  


2009 ◽  
Vol 21 (1) ◽  
pp. 217
Author(s):  
T. Wakai ◽  
N. Zhang ◽  
R. A. Fissore

Numerous studies have demonstrated that postovulatory aging of oocytes prior to fertilization has detrimental effects on oocyte quality and developmental competence. Oocyte aging is accompanied by abnormal oocyte activation and subsequent development, suggesting a disruption of Ca2+ oscillations after fertilization. The inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in mammals is responsible for the majority of Ca2+ release during fertilization (Miyazaki S et al. 1993 Dev. Biol.). Previously, we reported that phosphorylation of IP3R1 at an MPM-2 epitope may play an important role in facilitating the induction of Ca2+ oscillations at the MII stage (Lee B et al. 2006 Development), indicating that IP3R1 phosphorylation may be a good indicator of the health of the oocyte. However, few studies have investigated the alteration of the Ca2+ signaling and IP3R1 function associated with oocyte aging. On the other hand, a previous report showed that caffeine increased MPF activity and suppressed fragmentation after parthenogenetic activation of aged oocytes (Kikuchi K et al. 2000 Biol. Reprod.). Therefore, the purpose of the present study was to examine whether and how Ca2+ oscillatory activity changes during oocyte aging and to test if caffeine prevents the negative effects of oocyte aging. MII mouse oocytes were collected 14 h after hCG injection and cultured in vitro for 8, 24 or 48 h with or without caffeine (5 or 10 mm). Oocyte quality was assessed by the occurrence of spontaneous fragmentation, monitoring of Ca2+ oscillations after exposure to 10 mm strontium chloride, Western blot analysis of IP3R1 phosphorylation and immunostaining of IP3R1. In oocytes in vitro aged for 8 h, the duration of the first Ca2+ rise was significantly decreased compared with fresh MII oocytes, although this reduction was not observed in MII oocytes treated with 5 mm caffeine. The phosphorylation of IP3R1 at the MPM-2 epitope was slightly decreased during oocyte aging in both caffeine and noncaffeine treatment. Importantly, whereas IP3R1 in MII oocytes treated for 8 h with 5 mm caffeine displayed the typical cortical cluster organization, IP3R1 in aged oocytes without caffeine became dispersed in the cytoplasm. In addition, caffeine significantly suppressed the spontaneous fragmentation that is normally observed by 48 h of in vitro culture. These results suggest that the Ca2+ oscillatory activity is compromised during oocyte aging and caffeine prevents the loss of integrity of Ca2+ signaling possibly by keeping the cortical distribution of IP3R1.



2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Feng Wang ◽  
Ang Li ◽  
Tie-Gang Meng ◽  
Le-Yun Wang ◽  
Li-Juan Wang ◽  
...  


Oncotarget ◽  
2017 ◽  
Vol 8 (24) ◽  
pp. 38631-38641 ◽  
Author(s):  
HaiYang Wang ◽  
Yu-Jin Jo ◽  
Jeong Su Oh ◽  
Nam-Hyung Kim


Zygote ◽  
2015 ◽  
Vol 24 (2) ◽  
pp. 195-205 ◽  
Author(s):  
Qian Li ◽  
Long-Bo Cui

SummaryThe postovulatory aging of oocytes eventually affects the development of oocytes and embryos. Oxidative stress is known to accelerate the onset of apoptosis in oocytes and influence their capacity for fertilisation. This study aimed to reveal the roles of temperature and the antioxidant N-acetyl-l-cysteine in preventing the aging of postovulatory mouse oocytes. First, newly ovulated mouse oocytes were cultured at various temperature and time combinations in HCZB medium with varying concentrations of N-acetyl-l-cysteine to assess signs of aging and developmental potential. When cultured in HCZB with 300 μM N-acetyl-l-cysteine at different temperature and incubation time combinations (namely 25°C for 12 h, 15°C for 24 h and 5°C for 12 h), the increase in the susceptibility of oocytes to activating stimuli was efficiently prevented, and the developmental potential was maintained following Sr2+ activation or in vitro fertilisation. After incubation at either 15°C for 36 h or 5°C for 24 h, oocytes that had decreased blastocyst rates displayed unrecoverable abnormal cortical granule distribution together with decreased BCL2 levels, total glutathione concentrations and glutathione/glutathione disulphide (GSH/GSSG) ratios. In conclusion, postovulatory oocyte aging could be effectively inhibited by appropriate N-acetyl-l-cysteine addition at low temperatures. In addition, a simple method for the temporary culture of mature oocytes was established.



PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e10074 ◽  
Author(s):  
Natalia Igosheva ◽  
Andrey Y. Abramov ◽  
Lucilla Poston ◽  
Judith J. Eckert ◽  
Tom P. Fleming ◽  
...  


Author(s):  
Feng Wang ◽  
Tie-Gang Meng ◽  
Jian Li ◽  
Yi Hou ◽  
Shi-Ming Luo ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document