chromosome segregation
Recently Published Documents


TOTAL DOCUMENTS

2261
(FIVE YEARS 536)

H-INDEX

118
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Yu-Chien Chuang ◽  
Gerald R. Smith

Appropriate DNA double-strand-break (DSB) and crossover distributions are required for proper meiotic chromosome segregation. Schizosaccharomyces pombe linear element proteins (LinEs) determine DSB hotspots; LinE-bound hotspots form 3D clusters over ∼200 kb chromosomal regions. Here, we investigated LinE configurations and distributions in live cells using super-resolution fluorescence microscopy. We found LinEs form two chromosomal structures, dot-like and linear structures, in both zygotic and azygotic meiosis. Dot-like LinE structures appeared around the time of meiotic DNA replication, underwent dotty-to-linear-to-dotty configurational transitions, and disassembled before the first meiotic division. DSB formation and repair did not detectably influence LinE structure formation, but failure of DSB formation delayed disassembly. Recombination-deficient LinE missense mutants formed dot-like but not linear LinE structures. Our quantitative study reveals a transient form of LinE structures and suggests a novel role for LinE proteins in regulating meiotic events, such as DSB repair. We discuss the relation of LinEs and the synaptonemal complex in other species.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shoukai Yu

The spindle and kinetochore-associated complex is composed of three members: SKA1, SKA2, and SKA3. It is necessary for stabilizing spindle microtubules attaching to kinetochore (KT) in the middle stage of mitosis. The SKA complex is associated with poor prognosis in several human cancers. However, the role of SKA complex in rare malignant diseases, such as gliomas, has not been fully investigated. We investigated several databases, including Oncomine, UALCAN, and cBioPortal to explore the expression profile and prognostic significance of SKA complex in patients with gliomas. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathways were used to analyze the potential enriched pathways. The genes co-expressed with SKA complex were identified and used for developing a protein-protein interaction (PPI) network using the STRING database. We found a significant overexpression of the mRNA levels of SKA1, SKA2, and SKA3 in patients with glioma patients. Higher expression of SKA1 and SKA3, but not SKA2, was significantly correlated with shorter overall survival of patients with glioma. In glioma, SKA complex was found to be involved in nuclear division, chromosome segregation, and DNA replication. The results of PPI network identified 10 hub genes (CCNB2, UBE2C, BUB1B, TPX2, CCNA2, CCNB1, MELK, TOP2A, PBK, and KIF11), all of which were overexpressed and negatively associated with prognosis of patients with glioma. In conclusion, our study sheds new insights into the biological role and prognostic significance of SKA complex in glioma.


2022 ◽  
Author(s):  
Ewa Niedzialkowska ◽  
Tan M Truong ◽  
Luke A Eldredge ◽  
Stefanie Redemann ◽  
Denis Chretien ◽  
...  

The spindle midzone is a dynamic structure that forms during anaphase, mediates chromosome segregation, and provides a signaling platform to position the cleavage furrow. The spindle midzone comprises two antiparallel bundles of microtubules (MTs) but the process of their formation is poorly understood. Here, we show that the Chromosomal Passenger Complex (CPC) undergoes liquid-liquid phase separation (LLPS) to generate parallel MT bundles in vitro when incubated with free tubulin and GTP. MT bundles emerge from CPC droplets with protruding minus-ends that then grow into long, tapered MT structures. During this growth, the CPC in condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for LLPS or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data uncovers a kinase-independent function of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle.


Author(s):  
Reito Watanabe ◽  
Yasuhiro Hirano ◽  
Masatoshi Hara ◽  
Yasushi Hiraoka ◽  
Tatsuo Fukagawa

AbstractThe kinetochore is essential for faithful chromosome segregation during mitosis and is assembled through dynamic processes involving numerous kinetochore proteins. Various experimental strategies have been used to understand kinetochore assembly processes. Fluorescence recovery after photobleaching (FRAP) analysis is also a useful strategy for revealing the dynamics of kinetochore assembly. In this study, we introduced fluorescence protein-tagged kinetochore protein cDNAs into each endogenous locus and performed FRAP analyses in chicken DT40 cells. Centromeric protein (CENP)-C was highly mobile in interphase, but immobile during mitosis. CENP-C mutants lacking the CENP-A-binding domain became mobile during mitosis. In contrast to CENP-C, CENP-T and CENP-H were immobile during both interphase and mitosis. The mobility of Dsn1, which is a component of the Mis12 complex and directly binds to CENP-C, depended on CENP-C mobility during mitosis. Thus, our FRAP assays provide dynamic aspects of how the kinetochore is assembled.


2022 ◽  
Author(s):  
Stanislau Yatskevich ◽  
Kyle W Muir ◽  
Dom Bellini ◽  
Ziguo Zhang ◽  
Jing Yang ◽  
...  

Accurate chromosome segregation, controlled by kinetochore-mediated chromatid attachments to the mitotic spindle, ensures the faithful inheritance of genetic information. Kinetochores assemble onto specialized CENP-A nucleosomes (CENP-ANuc) of centromeric chromatin. In humans, this is mostly organized as thousands of copies of an ~171 bp α-satellite repeat. Here, we describe the cryo-EM structure of the human inner kinetochore CCAN (Constitutive Centromere Associated Network) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, while a linker DNA segment of the α-satellite repeat emerges from the fully-wrapped end of the nucleosome to thread through the central CENP-LN channel which tightly grips the DNA. The CENP-TWSX histone-fold module, together with CENP-HIKHead, further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the α-satellite repeat linker DNA by CCAN provides a robust mechanism by which the kinetochore withstands the pushing and pulling of centromeres associated with chromosome congression and segregation forces.


2022 ◽  
Author(s):  
Marion E. Pesenti ◽  
Tobias Raisch ◽  
Duccio Conti ◽  
Ingrid Hoffmann ◽  
Dorothee Vogt ◽  
...  

Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. The organization of the interface between the kinetochore and the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, remains incompletely understood. A 16-subunit complex, the constitutive centromere associated network (CCAN), bridges CENP-A to the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has also important implications for the mechanism of specific recognition of the CENP-A nucleosome. A supported model depicts the interaction as fuzzy and identifies the disordered CCAN subunit CENP-C as only determinant of specificity. A more speculative model identifies both CENP-C and CENP-N as specificity determinants, but implies CENP-A may be in a hemisome rather than in a classical octamer.


Author(s):  
John R. Daum ◽  
Casey O. DuBose ◽  
Sushama Sivakumar ◽  
Gary J. Gorbsky

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dorota Rousova ◽  
Vaishnavi Nivsarkar ◽  
Veronika Altmannova ◽  
Vivek B Raina ◽  
Saskia K Funk ◽  
...  

In meiosis, DNA double strand break (DSB) formation by Spo11 initiates recombination and enables chromosome segregation. Numerous factors are required for Spo11 activity, and couple the DSB machinery to the development of a meiosis-specific “axis-tethered loop” chromosome organization. Through in vitro reconstitution and budding yeast genetics we here provide architectural insight into the DSB machinery by focussing on a foundational DSB factor, Mer2. We characterise the interaction of Mer2 with the histone reader Spp1, and show that Mer2 directly associates to nucleosomes, likely highlighting a contribution of Mer2 to tethering DSB factors to chromatin. We reveal the biochemical basis of Mer2 association with Hop1, a HORMA domain-containing chromosomal axis factor. Finally, we identify a conserved region within Mer2 crucial for DSB activity, and show that this region of Mer2 interacts with the DSB factor Mre11. In combination with previous work, we establish Mer2 as a keystone of the DSB machinery by bridging key protein complexes involved in the initiation of meiotic recombination.


Author(s):  
Evgeny Bakin ◽  
Fatih Sezer ◽  
Aslıhan Özbilen ◽  
Irem Kilic ◽  
Buket Uner ◽  
...  

Apomictic plants (reproducing via asexual seeds), unlike sexual individuals, avoid meiosis and egg cell fertilization. Consequently, apomixis is very important for fixing maternal genotypes in the next plant generations. Despite the progress in the study of apomixis, molecular and genetic regulation of the latter remains poorly understood. So far APOLLO (Aspartate Glutamate Aspartate Aspartate histidine exonuclease) is one of the very few described genes associated with apomixis in Boechera species. The centromere-specific histone H3 variant encoded by CENH3 gene is essential for cell division. Mutations in CENH3 disrupt chromosome segregation during mitosis and meiosis since the attachment of spindle microtubules to a mutated form of the CENH3 histone fails. This paper presents in silico characteristic of APOLLO and CENH3 genes, which may affect apomixis. Also, we characterize the structure of CENH3, study expression levels of APOLLO and CENH3 in gynoecium/siliques of the natural diploid apomictic and sexual Boechera species at the stages of before and after fertilization. While CENH3 was a single copy gene in all Boechera species, the APOLLO gene have several polymorphic alleles associated with sexual and apomictic reproduction in the Boechera genera. Expression of the APOLLO apo-allele during meiosis was upregulated in gynoecium of apomict B. divaricarpa downregulating after meiosis until 4th day after pollination (DAP). On the 5th DAP, expression in apomictic siliques increased again. In sexual B. stricta gynoecium and siliques APOLLO apo-allele did not express. Expression of the APOLLO sex-allele during and after meiosis in gynoecium of sexual plants was several times higher than that in apomictic gynoecium. However, after pollination the sex-allele was downregulated in sexual siliques to the level of apomicts and increased sharply on the 5th DAP, while in apomictic siliques it almost did not express. At the meiotic stage, the expression level of CENH3 in the gynoecium of apomicts was two times lower than that of the sexual Boechera, decreasing in both species after meiosis and keep remaining very low in siliques of both species for several days after artificial pollination until the 4th DAP, when the expression level raised in sexual B. stricta siliques exceeding 5 times the level in apomictic B. divaricarpa siliques. We also discuss polymorphism and phylogeny of the APOLLO and CENH3 genes.


2021 ◽  
Author(s):  
David M Roberts ◽  
Anna Anchimiuk ◽  
Tomas G Kloosterman ◽  
Heath Murray ◽  
Ling Juan Wu ◽  
...  

SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving ATP-dependent dimerization and DNA binding, leading to chromosome segregation and SMC loading. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation, and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. We now show that a major redistribution of SMC complexes drives axial filament formation, in a process regulated by ParA/Soj. Unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyse ATP. These results reveal a new role for ParA/Soj proteins in the regulation of SMC dynamics in bacteria, and yet further complexity in the web of interactions involving chromosome replication, segregation, and organization, controlled by ParAB and SMC.


Sign in / Sign up

Export Citation Format

Share Document