scholarly journals Nonparametric Kernel Smoothing Methods. ThesmLibrary in Xlisp-Stat

2001 ◽  
Vol 6 (7) ◽  
Author(s):  
Luca Scrucca
Author(s):  
Oliver B. Linton ◽  
Enno Mammen ◽  
Jens Perch Nielsen ◽  
Carsten Tanggaard

Author(s):  
Trevor Hastie ◽  
Robert Tibshirani ◽  
Jerome Friedman

2022 ◽  
Vol 23 (S1) ◽  
Author(s):  
Xifang Sun ◽  
Donglin Wang ◽  
Jiaqiang Zhu ◽  
Shiquan Sun

Abstract Background DNA methylation has long been known as an epigenetic gene silencing mechanism. For a motivating example, the methylomes of cancer and non-cancer cells show a number of methylation differences, indicating that certain features characteristics of cancer cells may be related to methylation characteristics. Robust methods for detecting differentially methylated regions (DMRs) could help scientists narrow down genome regions and even find biologically important regions. Although some statistical methods were developed for detecting DMR, there is no default or strongest method. Fisher’s exact test is direct, but not suitable for data with multiple replications, while regression-based methods usually come with a large number of assumptions. More complicated methods have been proposed, but those methods are often difficult to interpret. Results In this paper, we propose a three-step nonparametric kernel smoothing method that is both flexible and straightforward to implement and interpret. The proposed method relies on local quadratic fitting to find the set of equilibrium points (points at which the first derivative is 0) and the corresponding set of confidence windows. Potential regions are further refined using biological criteria, and finally selected based on a Bonferroni adjusted t-test cutoff. Using a comparison of three senescent and three proliferating cell lines to illustrate our method, we were able to identify a total of 1077 DMRs on chromosome 21. Conclusions We proposed a completely nonparametric, statistically straightforward, and interpretable method for detecting differentially methylated regions. Compared with existing methods, the non-reliance on model assumptions and the straightforward nature of our method makes it one competitive alternative to the existing statistical methods for defining DMRs.


2018 ◽  
Vol 12 (5) ◽  
pp. 1032-1034
Author(s):  
Xuanhui Yan ◽  
Lifei Chen ◽  
Gongde Guo

Author(s):  
Laurent Delsol

This article considers how functional kernel methods can be used to study α-mixing datasets. It first provides an overview of how prediction problems involving dependent functional datasets may arise from the study of time series, focusing on the standard discretized model and modelization that takes into account the functional nature of the evolution of the quantity to be studied over time. It then considers strong mixing conditions, with emphasis on the notion of α-mixing coefficients and α-mixing variables introduced by Rosenblatt (1956). It also describes some conditions for a Markov chain to be α-mixing; some useful tools that provide covariance inequalities, exponential inequalities, and Central Limit Theorem (CLT) for α-mixing sequences; the asymptotic properties of functional kernel estimators; the use of kernel smoothing methods with α-mixing datasets; and various functional kernel estimators corresponding to different prediction methods. Finally, the article highlights some interesting prospects for further research.


Sign in / Sign up

Export Citation Format

Share Document