chromosome 21
Recently Published Documents


TOTAL DOCUMENTS

1377
(FIVE YEARS 220)

H-INDEX

81
(FIVE YEARS 5)

2022 ◽  
Vol 23 (S1) ◽  
Author(s):  
Xifang Sun ◽  
Donglin Wang ◽  
Jiaqiang Zhu ◽  
Shiquan Sun

Abstract Background DNA methylation has long been known as an epigenetic gene silencing mechanism. For a motivating example, the methylomes of cancer and non-cancer cells show a number of methylation differences, indicating that certain features characteristics of cancer cells may be related to methylation characteristics. Robust methods for detecting differentially methylated regions (DMRs) could help scientists narrow down genome regions and even find biologically important regions. Although some statistical methods were developed for detecting DMR, there is no default or strongest method. Fisher’s exact test is direct, but not suitable for data with multiple replications, while regression-based methods usually come with a large number of assumptions. More complicated methods have been proposed, but those methods are often difficult to interpret. Results In this paper, we propose a three-step nonparametric kernel smoothing method that is both flexible and straightforward to implement and interpret. The proposed method relies on local quadratic fitting to find the set of equilibrium points (points at which the first derivative is 0) and the corresponding set of confidence windows. Potential regions are further refined using biological criteria, and finally selected based on a Bonferroni adjusted t-test cutoff. Using a comparison of three senescent and three proliferating cell lines to illustrate our method, we were able to identify a total of 1077 DMRs on chromosome 21. Conclusions We proposed a completely nonparametric, statistically straightforward, and interpretable method for detecting differentially methylated regions. Compared with existing methods, the non-reliance on model assumptions and the straightforward nature of our method makes it one competitive alternative to the existing statistical methods for defining DMRs.


2022 ◽  
Vol 62 (1) ◽  
pp. 211-233
Author(s):  
Renata Bartesaghi ◽  
Stefano Vicari ◽  
William C. Mobley

Those with Down syndrome (DS)—trisomy for chromosome 21—are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.


2022 ◽  
pp. 1-32
Author(s):  
Melinda A. Yang

L.L. Cavalli-Sforza spearheaded early efforts to study the genetic history of humans, recognizing the importance of sampling diverse populations worldwide. He supported research on human evolutionary genetics in Asia, with research on human dispersal into Asia and genetic distances between present-day East Asians in the late 20th century. Since then, great strides have been made in understanding the genetic history of humans in Asia, through large-scale genomic sequencing of present-day humans and targeted sequencing of DNA from ancient humans. In this review, I survey the genetic prehistory of humans in Asia, based on research using sequence data from humans who lived in Asia as early as 45,000 years ago. Genetic studies comparing present-day Australasians and Asians show that they likely derived from a single dispersal out of Africa, rapidly differentiating into three main lineages: one that persists partially in South Asia, one that is primarily found today in Australasia, and one that is widely represented across Siberia, East Asia, and Southeast Asia. Studies of ancient DNA from human remains in Asia dating from as far back as 45,000 years has greatly increased our understanding of the population dynamics leading to the current Asian populations. Based on "Jin L, Underhill PA, Doctor V, Davis RW, Shen P, Cavalli-Sforza LL, Oefner PJ. Distribution of haplotypes from a chromosome 21 region distinguishes multiple prehistoric human migrations. Proc Natl Acad Sci U S A. 1999;96(7):3796-3800”.


2021 ◽  
Author(s):  
Claudia Cannavo ◽  
Karen Cleverley ◽  
Cheryl Maduro ◽  
Paige Mumford ◽  
Dale Moulding ◽  
...  

Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer’s disease – dementia. Alzheimer’s disease is characterised by the accumulation in the brain of amyloid-β plaques that are a product of amyloid precursor protein, encoded by the APP gene on chromosome 21. In Down syndrome the first site of amyloid-β accumulation is within endosomes and changes to endosome biology occur early in disease. Here we determine if primary mouse embryonic fibroblasts isolated from two mouse models of Down syndrome can be used to study endosome and APP cell biology. We report that in these cellular models of Down syndrome endosome number, size and APP processing are not altered, likely because APP is not dosage sensitive in these models, despite three copies of App .


2021 ◽  
Author(s):  
Mengmeng Jin ◽  
Ranji Xu ◽  
Mahabub Maraj Alam ◽  
Ziyuan Ma ◽  
Sining Zhu ◽  
...  

Microglia are critical for brain development and play a central role in Alzheimers disease (AD) etiology. Down syndrome (DS), also known as trisomy 21, is the most common genetic origin of intellectual disability and the most common risk factor for AD. Surprisingly, little information is available on the impact of trisomy of human chromosome 21 (Hsa21) on microglia in DS brain development and AD in DS (DSAD). Using our new induced pluripotent stem cell (iPSC)-based human microglia-containing cerebral organoid and chimeric mouse brain models, here we report that DS microglia exhibit enhanced synaptic pruning function during brain development. Consequently, electrophysiological recordings demonstrate that DS microglial mouse chimeras show impaired synaptic neurotransmission, as compared to control microglial chimeras. Upon being exposed to human brain tissue-derived soluble pathological tau, DS microglia display dystrophic phenotypes in chimeric mouse brains, recapitulating microglial responses seen in human AD and DSAD brain tissues. Further flow cytometry, single-cell RNA-sequencing, and immunohistological analyses of chimeric mouse brains demonstrate that DS microglia undergo cellular senescence and exhibit elevated type I interferon signaling after being challenged by pathological tau. Mechanistically, we find that shRNA-mediated knockdown of Hsa21encoded type I interferon receptor genes, IFNARs, rescues the defective DS microglial phenotypes both during brain development and in response to pathological tau. Our findings provide first in vivo evidence supporting a paradigm shifting theory that human microglia respond to pathological tau by exhibiting accelerated senescence and dystrophic phenotypes. Our results further suggest that targeting IFNARs may improve microglial functions during DS brain development and prevent human microglial senescence in DS individuals with AD.


2021 ◽  
Author(s):  
Ana Cindric ◽  
Frano Vuckovic ◽  
David Koschut ◽  
Vincenzo Borelli ◽  
Julija Juric ◽  
...  

Abstract Cells from people with Down syndrome (DS) show faster accumulation of DNA damage and epigenetic aging marks. Causative mechanisms remain un-proven and hypotheses range from amplified chromosomal instability to actions of several supernumerary chromosome 21 genes. Plasma immunoglobulin G (IgG) glycosylation profiles are established as a reliable predictor of biological and chronological aging. We performed IgG glycan profiling of n=246 individuals with DS (208 adults and 38 children) from three European populations and compared these to age-, sex- and demography-matched general populations. We uncovered very significantly increased IgG glycosylation aging marks associated with DS. Average levels of IgG glycans without galactose (G0) and those with two galactoses (G2) as a function of age in persons with DS corresponded to levels detected in 19 years older euploid individuals. Some aging marks were significant already in children with DS. Remarkably, the IgG glycan profiles of a child with segmental duplication of only 31 genes on chromosome 21 had values similar to those of age-matched DS children, outside the normal children’s range. This is the first non-epigenetic evidence of accelerated systemic biological aging in DS, suggesting it begins very early in childhood. It points to a causative contribution of the overdose of genes in a short segment of chromosome 21, not previously linked to accelerated aging, opening a route to discovery of hitherto unrecognised mechanisms.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Rebeca San Martin ◽  
Priyojit Das ◽  
Renata Dos Reis Marques ◽  
Yang Xu ◽  
Justin M. Roberts ◽  
...  

Prostate cancer aggressiveness and metastatic potential are influenced by gene expression and genomic aberrations, features that can be influenced by the 3D structure of chromosomes inside the nucleus. Using chromosome conformation capture (Hi-C), we conducted a systematic genome architecture comparison on a cohort of cell lines that model prostate cancer progression, from normal epithelium to bone metastasis. We describe spatial compartment identity (A-open versus B-closed) changes with progression in these cell lines and their relation to gene expression changes in both cell lines and patient samples. In particular, 48 gene clusters switch from the B to the A compartment, including androgen receptor, WNT5A, and CDK14. These switches are accompanied by changes in the structure, size, and boundaries of topologically associating domains (TADs). Further, compartment changes in chromosome 21 are exacerbated with progression and may explain, in part, the genesis of the TMPRSS2-ERG translocation. These results suggest that discrete 3D genome structure changes play a deleterious role in prostate cancer progression. 


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Antonaros ◽  
Margherita Pitocco ◽  
Domenico Abete ◽  
Beatrice Vione ◽  
Allison Piovesan ◽  
...  

Down syndrome (DS) is caused by trisomy of chromosome 21 and it is the most common genetic cause of intellectual disability (ID) in humans. Subjects with DS show a typical phenotype marked by facial dysmorphisms and ID. Partial trisomy 21 (PT21) is a rare genotype characterized by the duplication of a delimited chromosome 21 (Hsa21) portion and it may or may not be associated with DS diagnosis. The highly restricted Down syndrome critical region (HR-DSCR) is a region of Hsa21 present in three copies in all individuals with PT21 and a diagnosis of DS. This region, located on distal 21q22.13, is 34 kbp long and does not include characterized genes. The HR-DSCR is annotated as an intergenic region between KCNJ6-201 transcript encoding for potassium inwardly rectifying channel subfamily J member 6 and DSCR4-201 transcript encoding Down syndrome critical region 4. Two transcripts recently identified by massive RNA-sequencing (RNA-Seq) and automatically annotated on Ensembl database reveal that the HR-DSCR seems to be partially crossed by KCNJ6-202 and DSCR4-202 isoforms. KCNJ6-202 shares the coding sequence with KCNJ6-201 which is involved in many physiological processes, including heart rate in cardiac cells and circuit activity in neuronal cells. DSCR4-202 transcript has the first two exons in common with DSCR4-201, the only experimentally verified gene uniquely present in Hominidae. In this study, we performed in silico and in vitro analyses of the HR-DSCR. Bioinformatic data, obtained using Sequence Read Archive (SRA) and SRA-BLAST software, were confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Sanger sequencing on a panel of human tissues. Our data demonstrate that the HR-DSCR cannot be defined as an intergenic region. Further studies are needed to investigate the functional role of the new transcripts, likely involved in DS phenotypes.


2021 ◽  
Author(s):  
Beatrice Vione ◽  
Chiara Locatelli ◽  
Giacomo Zavaroni ◽  
Angela Piano ◽  
Giorgia La Rocca ◽  
...  

AbstractDown syndrome (DS) is the most common chromosomal disorder, and it is caused by trisomy of chromosome 21 (Hsa21). Subjects with DS can show a large heterogeneity of phenotypes and congenital defects and the most constant clinical features present are typical facies and intellectual disability (ID). Jérôme Lejeune was the first who hypothesized that DS could be a metabolic disease and he noted an alteration of the folate pathway (part of the one-carbon cycle) in trisomic cell lines and subjects with DS. Comparing DS with other metabolic diseases characterized by ID and altered folate pathway he hypothesized a possible correlation among them. Recently, a nuclear magnetic resonance (NMR) analysis of the detectable metabolic part in plasma and urine samples was performed, comparing a group of subjects with DS and a group of control subjects. The data showed a clear difference in the concentration of some metabolites (all involved in central metabolic processes) for the DS group, which was sometimes in agreement with gene dosage expected proportions (3:2). The aim of this work is to underline metabolic differences between subjects with DS and control subjects in order to better understand the dysregulation of the folate pathway in DS. For the first time, we performed enzyme-linked immunosorbent assays (ELISAs) to identify the concentration of 4 different intermediates of the one-carbon cycle, namely tetrahydrofolate (THF), 5-methyl-THF, 5-formyl-THF and S-adenosyl-homocysteine (SAH) in plasma samples obtained from 153 subjects with DS and 54 euploid subjects. Results highlight specific alterations of some folate pathway related metabolites. The relevance of these results for the biology of intelligence and its impairment in trisomy 21 is discussed leading to the proposal of 5-methyl-THF as the best candidate for a clinical trial aimed at restoring the dysregulation of folate pathway in trisomy 21 and improving cognitive skills of subjects with DS.


2021 ◽  
Author(s):  
Beatrice Uguagliati ◽  
Fiorenza Stagni ◽  
Marco Emili ◽  
Andrea Giacomini ◽  
Carla Russo ◽  
...  

Down syndrome (DS), which is due to triplication of chromosome 21, is constantly associated with intellectual disability (ID). ID can be ascribed to both neurogenesis impairment and dendritic pathology. These defects are replicated in the Ts65Dn mouse, a widely used model of DS. While neurogenesis impairment in DS is a fetal event, dendritic pathology occurs after the first postnatal months. Neurogenesis alterations across the lifespan have been extensively studied in the Ts65Dn mouse. In contrast, there is scarce information regarding dendritic alterations at early life stages in this and other models, although there is evidence for dendritic alterations in adult mouse models. Thus, the goal of the current study was to establish whether dendritic alterations are already present in the neonatal period in Ts65Dn mice. In Golgi-stained brains we quantified the dendritic arbors of layer II/III pyramidal neurons in the frontal cortex of Ts65Dn mice aged 2 (P2) and 8 (P8) days and their euploid littermates. In P2 Ts65Dn mice we found a moderate hypotrophy of the apical and collateral dendrites but a patent hypotrophy of the basal dendrites. In P8 Ts65Dn mice the distalmost apical branches were missing or reduced in number but there were no alterations in the collateral and basal dendrites. No genotype effects were detected on either somatic or dendritic spine density. This study shows dendritic branching defects that mainly involve the basal domain in P2 Ts65Dn mice, and the apical but not the other domains in P8 Ts65Dn mice. This suggests that dendritic defects may be related to dendritic compartment and age. The lack of a severe dendritic pathology in Ts65Dn pups is reminiscent of the delayed appearance of patent dendritic alterations in newborns with DS. This similarly highlights the usefulness of the Ts65Dn model for the study of the mechanisms underlying dendritic alterations in DS and the design of possible therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document