scholarly journals Radiation and Viscous Dissipation Effects on Laminar Boundary Layer Flow Nanofluid over a Vertical Plate with a Convective Surface Boundary Condition with Suction

2016 ◽  
Vol 9 (6) ◽  
pp. 2097-2103
Author(s):  
K. Gangadhar ◽  
Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1896
Author(s):  
Hillary Muzara ◽  
Stanford Shateyi

This study investigates the effects of viscous dissipation and a heat source or sink on the magneto-hydrodynamic laminar boundary layer flow of a Jeffrey fluid past a vertical plate. The governing boundary layer non-linear partial differential equations are reduced to non-linear ordinary differential equations using suitable similarity transformations. The resulting system of dimensionless differential equations is then solved numerically using the bivariate spectral quasi-linearisation method. The effects of some physical parameters that include the Schmidt number, Eckert number, radiation parameter, magnetic field parameter, heat generation parameter, and the ratio of relaxation to retardation times on the velocity, temperature, and concentration profiles are presented graphically. Additionally, the influence of some physical parameters on the skin friction coefficient, local Nusselt number, and the local Sherwood number are displayed in tabular form.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
O. D. Makinde ◽  
P. O. Olanrewaju

This study aims to analyze the effects of thermal buoyancy on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by applying shooting iteration technique together with fourth-order Runge–Kutta integration scheme. The variations in dimensionless surface temperature and fluid-solid interface characteristics for different values of Prandtl number (Pr), local Grashof number Grx, and local convective heat transfer parameter Bix are graphed and tabulated. A comparison with previously published results on special case of the problem shows excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document