International Journal of Thermal and Environmental Engineering
Latest Publications


TOTAL DOCUMENTS

243
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

Published By International Association For Sharing Knowledge And Sustainability

1923-7316, 1923-7308

Atmospheric pollutants, such as metals, are extremely variable in space and time and it is cumbersome and expensive to deduce detailed information over a vast area using traditional instruments. Consequently, a cost-effective bio-monitor was preferred in the present study to analyze the atmospheric metal load. For this purpose, a moss Hypnum cupressiforme Hedw was inducted amongst moss species available to evaluate the intensity and trend of atmospheric deposition of Zn, Cu, Cd, and Pb in Jammu in the state of Jammu and Kashmir, India for a period of three years, 2014- 2016. The biomonitoring experimentation was performed by transplanting moss bags prepared from Hypnum cupressiforme, after validating its tolerance against metals using a photosynthetic efficiency analyzer in the field. Moss Hypnum cupressiforme Hedw exposed seasonally, covering summer, monsoon, and winter periods, upon the analysis provided time-integrated patterns of metal bioavailability at the study sites. An attempt was made to compare the seasonal variations during the three years of study and findings exhibited significant seasonal variations in metal. The gradient of the metal load was in the order of Cu>Cd>Zn>Pb. The total average percentage increase in the metals under consideration, Zn, Pb, Cu, and Cd, was 40%, 37%,79%, and 76%, respectively during three subsequent years. It is worth mentioning here that biomonitoring studies on atmospheric metals have never been explored for this region.


According to the World Health Organization (WHO), hearing loss (HL) is one of the six key contributors to worldwide disease rates. It is becoming a critical issue in society, not just affecting the aging population, but also negatively impacting young people who are spending more of their spare time performing activities that expose them to excessive noise levels. In this research, we intend to design a filter as a signal processing system in a hearing aid (HA). MATLAB is used to model the digital filter structure, while Simulink is used to capture the entire design. This study examines current critical concerns in hearing aid research from the perspectives of a variety of disciplines. The study proposes a filter and signal processor model based on hearing aid experience, but first, it provides an audiogram for numerous examples to determine if the suggested model would suit or not. The work thus provides an effective compensation of missed high-frequency sounds response in patient hearing by the digital signal processor.


Noise pollution is one of the most fundamental challenges facing our environment, causes health problem, communication inefficiency and degrade the performance of works due to lack of concentration, thus, mitigating this impact becomes an unavoidable requirement of time to protect people's health and the environment. This noise may originate from several sources including industrial machinery, system parts wear out, and adjacent environmental acoustics. To mitigate this noise effect, an Active Noise Cancellation (ANC) headphone is achieved by two effective techniques; Adaptive filtering and Standing wave phenomenon. In this work, an ANC system is designed using both adaptive filtering and standing wave techniques, the former one basically utilizes single-channel feedforward whereas the latter one utilizes both single-channel feedforward and feedback control. LMS adaptive filter algorithm is the basic component of the designed ANC headphone. For simulation, a noise-free signal will be used as the desired audio signal and a gaussian distributed noise as the unwanted noise signal, these are combined to form noise corrupted speech signal. Propose algorithms performance were evaluated based on the ability to mitigate effects of different frequency broad-band noise signals and of different Noise to Signal ratio. Evaluation measures used are; convergence rate and noise reduction in dB. Result reveals ANC headphone using standing wave technique has better performance at mitigating noise frequency below 800Hz, with low SNR than Adaptive filtering. However, at higher frequencies above 1000Hz, ANC headphone using Adaptive filtering has good performance of masking high frequencies up to 22dB.


This work focuses on the rib-turbulated cooling which is a category of impingement cooling and aims at optimizing the geometry of rib-roughened cooling passage of a gas turbine blade. CFD analysis is carried out using Ansys/Fluent to solve the steady RANS equations. Computational domain consists of a long rectangular channel with the length of the channel being 9 times its height. Ratios of rib width, rib height and rib pitch to hydraulic diameter of the channel are taken as 0.1, 0.1 and 1.2, respectively. Numerical simulations are performed to analyze the performance of various rib shapes for Reynolds number, based upon the hydraulic diameter, in a range of 5000 to 50,000. Uniform heat flux of 800 W/m2 is applied to the ribbed wall. Incompressible air is used as the cooling fluid. Turbulent flow conditions are applied to the channel geometry with k-ω turbulence model. The effect of rib cross-section and rib pitch to rib width ratio on the heat transfer and friction factor is observed. The 2D CFD analysis revealed that the presence of ribs has significant effect on thermo-hydraulic performance of the cooling channel. Introducing square ribs in a smooth channel caused the Nusselt number to increase by two-folds. The highest value of Nusselt number was achieved by incorporating right-angle triangular ribs which caused the Nusselt number to increase by further 8%, as compared to the square ribs, and an increase in friction factor of 2.5%. The lowest value of friction factor was observed in semicircular ribs (2.95% less than the square ribs), however, the Nusselt number also decreased by 1.5%, as compared to square ribs. Decreasing rib pitch to rib width ratio increased both the Nusselt number and friction factor for all the cases. For square ribs, decreasing this ratio from 15 to 9 resulted in the rise of Nusselt number by 50% and increase in friction factor by 54%.


Electrocardiogram (ECG) is the study of the electrical signals of the human heart that are generated by the pumping action of the heart caused by the polarization and depolarization of the nodes of the heart. These signals must be interpreted with great accuracy and efficiency as they are paramount in prognosis and subsequent diagnosis of the condition of the patient. The goal of this project is to analyze the ECG signals following Fourier and Wavelet transforms, and to highlight and demonstrate the advantages of the Wavelet transform. Firstly, it involves simulating the temporal digital ECG signal and explaining the signal constituents, i.e., P, Q, R, S, T waves while staying in the time domain. Secondly, the ECG signal will be transferred into the frequency domain for quick, fast, and compressed analysis and carry out signal processing using Fourier analysis and highlight the pros and cons of this technique. Thirdly, wavelet analysis will be explored and demonstrated to mitigate the shortcoming of the former tool, i.e., Fourier. At this stage, various ECG signals, mimicking abnormalities, will be analyzed. This work will highlight the effectiveness of wavelet analysis as a tool to examine ECG signals. This work, hence, will entail, comparison of both transformation methods by utilizing the computational power of MATLAB.


The acoustic performance of a typical Helmholtz resonator is important for optimizing sound absorption coefficient. The acoustic impedance of the Helmholtz resonator varies with different geometric features. As such, various studies have been conducted to investigate some parametric effects like neck length, extended neck, orifice size, cavity size and glazing flow speed. In this study, we explore, numerically, the effect of cavity shape and geometric aspect ratios among other features. We determined the optimum geometric shapes, dimension and flow condition for better sound absorption of the Helmholtz resonator.


Author(s):  
Abdelouahab Bouttout

The study in question consists to amplify the hydrodynamic and thermal instabilities by imposed pulsation during forced convection of air cooling of nine identical heated blocks simulate electronic components mounted on horizontal channel. The finite volume method has been used to solve the governing equations of unsteady forced convection. This approach uses control volume for velocities that are staggered with respect to those for temperature and pressure. The numerical procedure called SIMPLER is used to handle the pressure-velocity coupling. The results show that the time averaged Nusselt number for each heated block depends on the pulsation frequencies and is always larger than in the steady-state case. The new feature in this work is that we obtained a short band of frequencies which the enhancement of heat transfer of all electronic components is greater than 20 % compared with steady non pulsation flow. In addition, the gain in heat transfer Emax attainted the maximum value for the central blocks. Our numerical results were compared with other investigations and found to agree well with experimental data.


The use of organic isobutane will be investigated for a closed-cycle Ocean Thermal Energy Conversion (OTEC) onshore plant that delivers 110 MW electric powers. This paper will cover concept, process, energy calculations, cost factoids and environmental aspects. In isobutane cycle, hot ocean surface water is used to vaporize and to superheat isobutane in a heat exchanger. Isobutane vapor then expands through a turbine to generate useful power. The exhaust vapor is condensed afterwards, using the cold deeper ocean water, and pumped to a heat exchanger to complete a cycle. Results show the major design characteristics and equipment's of the OTEC plant along with cycle efficiency and cycle improvement techniques.


Effective heat transfer is essential in a variety of energy technologies in order to enable the maximum possible power density and power conversion efficiency needed for economic competitiveness and fuel conservation. The goal of enhanced heat transfer is to encourage or accommodate high heat fluxes. This results in reduction of heat exchanger size, which generally leads to less capital cost. Recently tremendous works have been conducted on heat transfer enhancement and a large number of techniques for heat transfer enhancement have been developed. This work concerns the investigation on effect of porous media on heat transfer rate in heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document