Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees

2015 ◽  
Vol 25 (3) ◽  
pp. 742-752 ◽  
Author(s):  
Gideon Pisanty ◽  
Yael Mandelik
2015 ◽  
Vol 69 ◽  
pp. 87-95
Author(s):  
Mario R. Moura ◽  
Marianna Dixo ◽  
Renato N. Feio

2015 ◽  
Vol 50 (19-20) ◽  
pp. 1175-1196 ◽  
Author(s):  
Violette Le Féon ◽  
Santiago L. Poggio ◽  
Juan Pablo Torretta ◽  
Colette Bertrand ◽  
Gonzalo A. R. Molina ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Mariah C. Livernois ◽  
John A. Mohan ◽  
Thomas C. TinHan ◽  
Travis M. Richards ◽  
Brett J. Falterman ◽  
...  

As predators, coastal and oceanic sharks play critical roles in shaping ecosystem structure and function, but most shark species are highly susceptible to population declines. Effective management of vulnerable shark populations requires knowledge of species-specific movement and habitat use patterns. Since sharks are often highly mobile and long-lived, tracking their habitat use patterns over large spatiotemporal scales is challenging. However, the analysis of elemental tracers in vertebral cartilage can describe a continuous record of the life history of an individual from birth to death. This study examined trace elements (Li, Mg, Mn, Zn, Sr, and Ba) along vertebral transects of five shark species with unique life histories. From most freshwater-associated to most oceanic, these species include Bull Sharks (Carcharhinus leucas), Bonnethead Sharks (Sphyrna tiburo), Blacktip Sharks (Carcharhinus limbatus), Spinner Sharks (Carcharhinus brevipinna), and Shortfin Mako Sharks (Isurus oxyrinchus). Element concentrations were compared across life stages (young-of-the-year, early juvenile, late juvenile, and adult) to infer species-specific ontogenetic patterns of habitat use and movement. Many of the observed elemental patterns could be explained by known life history traits: C. leucas exhibited clear ontogenetic changes in elemental composition matching expected changes in their use of freshwater habitats over time. S. tiburo elemental composition did not differ across ontogeny, suggesting residence in estuarine/coastal regions. The patterns of elemental composition were strikingly similar between C. brevipinna and C. limbatus, suggesting they co-occur in similar habitats across ontogeny. I. oxyrinchus elemental composition was stable over time, but some ontogenetic shifts occurred that may be due to changes in migration patterns with maturation. The results presented in this study enhance our understanding of the habitat use and movement patterns of coastal and oceanic sharks, and highlights the applicability of vertebral chemistry as a tool for characterizing shark life history traits.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Sign in / Sign up

Export Citation Format

Share Document