scholarly journals Discrete Space-Time on the Manifestation of Mass

2018 ◽  
Vol 14 (3) ◽  
pp. 31
Author(s):  
Rickey W. Austin

Schwarzschild’s Metric (Schwarzschild 1916) under specific conditions provides a Taylor series first order discrete length when transforming coordinates between observers. Exploring the consequences of the discrete length produces an a priori result of quantized space-time. Deriving base units from the quantization of space-time and applying elementary charge, exact formulations for the observed Schwarzschild’s discrete units are obtained. These units are equivalent to Planck’s mass, length, time, momentum, force, energy and Planck’s constant (NIST CODATA 2014).

1994 ◽  
Vol 35 (9) ◽  
pp. 4463-4468 ◽  
Author(s):  
Yi‐Shi Duan ◽  
Sheng‐Li Zhang ◽  
Sze‐Shiang Feng

2020 ◽  
pp. 133-156
Author(s):  
Jim Baggott

From the outset, Heisenberg had resolved to eliminate classical space-time pictures involving particles and waves from the quantum mechanics of the atom. He had wanted to focus instead on the properties actually observed and recorded in laboratory experiments, such as the positions and intensities of spectral lines. Alone in Copenhagen in February 1927, he now pondered on the significance and meaning of such experimental observables. Feeling the need to introduce at least some form of ‘visualizability’, he asked himself some fundamental questions, such as: What do we actually mean when we talk about the position of an electron? He went on to discover the uncertainty principle: the product of the ‘uncertainties’ in certain pairs of variables—called complementary variables—such as position and momentum cannot be smaller than Planck’s constant h (now h / 4π‎).


2010 ◽  
Vol 2010 ◽  
pp. 1-39 ◽  
Author(s):  
Alessandro Morando ◽  
Paolo Secchi

We study the boundary value problem for a linear first-order partial differential system with characteristic boundary of constant multiplicity. We assume the problem to be “weakly” well posed, in the sense that a uniqueL2-solution exists, for sufficiently smooth data, and obeys an a priori energy estimate with a finite loss of tangential/conormal regularity. This is the case of problems that do not satisfy the uniform Kreiss-Lopatinskiĭ condition in the hyperbolic region of the frequency domain. Provided that the data are sufficiently smooth, we obtain the regularity of solutions, in the natural framework of weighted conormal Sobolev spaces.


Sign in / Sign up

Export Citation Format

Share Document