energy estimate
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 4 (1) ◽  
pp. 77-85
Author(s):  
Mohammad Ghani

We are interested in the study of asymptotic stability for Burgers equation with second-order nonlinear diffusion. We first transform the original equation by the ansatz transformation to establish the existence of traveling wave. We further employ the energy estimate under small perturbation and arbitrary wave amplitude. This energy estimate is then used to establish the stability.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jeongho Kim ◽  
Bora Moon

<p style='text-indent:20px;'>We present two types of the hydrodynamic limit of the nonlinear Schrödinger-Chern-Simons (SCS) system. We consider two different scalings of the SCS system and show that each SCS system asymptotically converges towards the compressible and incompressible Euler system, coupled with the Chern-Simons equations and Poisson equation respectively, as the scaled Planck constant converges to 0. Our method is based on the modulated energy estimate. In the case of compressible limit, we observe that the classical theory of relative entropy method can be applied to show the hydrodynamic limit, with the additional quantum correction term. On the other hand, for the incompressible limit, we directly estimate the modulated energy to derive the desired asymptotic convergence.</p>


Author(s):  
Yuanfei Li ◽  
Xuejiao Chen

This paper investigates the spatial behavior of the solutions of the double-diffusive Darcy plane flow in a semi-infinite channel. Using the energy estimate method and the differential inequality technology, a differential inequality about the solutions is derived. By solving this differential inequality, it is proved that the solutions grow polynomially or decay exponentially with spatial variable. In the case of decay, we obtain the upper bound for the total energy. We also give some remarks to generalize the results of this paper.


2021 ◽  
Vol 273 (1339) ◽  
Author(s):  
Gong Chen

We prove Strichartz estimates (both regular and reversed) for a scattering state to the wave equation with a charge transfer Hamiltonian in R 3 \mathbb {R}^{3} : \[ ∂ t t u − Δ u + ∑ j = 1 m V j ( x − v → j t ) u = 0. \partial _{tt}u-\Delta u+\sum _{j=1}^{m}V_{j}\left (x-\vec {v}_{j}t\right )u=0. \] The energy estimate and the local energy decay of a scattering state are also established. In order to study nonlinear multisoltion systems, we will present the inhomogeneous generalizations of Strichartz estimates and local decay estimates. As an application of our results, we show that scattering states indeed scatter to solutions to the free wave equation. These estimates for this linear models are also of crucial importance for problems related to interactions of potentials and solitons, for example, in [Comm. Math. Phys. 364 (2018), no. 1, pp. 45–82].


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 509
Author(s):  
Qingfeng Wang ◽  
Ming Li ◽  
Christopher Monroe ◽  
Yunseong Nam

The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power of quantum computers. Here, we address this problem in two aspects. In the fault-tolerant regime, we optimize the Rz and T gate counts along with the ancilla qubit counts required, assuming the use of a product-formula algorithm for implementation. We obtain a savings ratio of two in the gate counts and a savings ratio of eleven in the number of ancilla qubits required over the state of the art. In the pre-fault tolerant regime, we optimize the two-qubit gate counts, assuming the use of the variational quantum eigensolver (VQE) approach. Specific to the latter, we present a framework that enables bootstrapping the VQE progression towards the convergence of the ground-state energy of the fermionic system. This framework, based on perturbation theory, is capable of improving the energy estimate at each cycle of the VQE progression, by about a factor of three closer to the known ground-state energy compared to the standard VQE approach in the test-bed, classically-accessible system of the water molecule. The improved energy estimate in turn results in a commensurate level of savings of quantum resources, such as the number of qubits and quantum gates, required to be within a pre-specified tolerance from the known ground-state energy. We also explore a suite of generalized transformations of fermion to qubit operators and show that resource-requirement savings of up to more than 20%, in small instances, is possible.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Antonio Márquez ◽  
Salim Meddahi

Abstract We introduce and analyze a stress-based formulation for Zener’s model in linear viscoelasticity. The method is aimed to tackle efficiently heterogeneous materials that admit purely elastic and viscoelastic parts in their composition. We write the mixed variational formulation of the problem in terms of a class of tensorial wave equation and obtain an energy estimate that guaranties the well-posedness of the problem through a standard Galerkin procedure. We propose and analyze mixed continuous and discontinuous Galerkin space discretizations of the problem and derive optimal error bounds for each semidiscrete solution in the corresponding energy norm. Finally, we discuss full discretization strategies for both Galerkin methods.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mengmeng Liu ◽  
Xueyun Lin

AbstractIn this paper, we show the global existence of classical solutions to the incompressible elastodynamics equations with a damping mechanism on the stress tensor in dimension three for sufficiently small initial data on periodic boxes, that is, with periodic boundary conditions. The approach is based on a time-weighted energy estimate, under the assumptions that the initial deformation tensor is a small perturbation around an equilibrium state and the initial data have some symmetry.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dengming Liu ◽  
Changyu Liu

In this article, we deal with an inhomogeneous fast diffusive polytropic filtration equation. By using the energy estimate approach, Hardy–Littlewood–Sobolev inequality, and a series of ordinary differential inequalities, we prove the global existence result and obtain the conditions on the occurrence of the extinction phenomenon of the weak solution.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaoyuan Wang ◽  
Sirui Li ◽  
Tingting Wang

AbstractWe consider the inertial Qian–Sheng’s Q-tensor dynamical model for the nematic liquid crystal flow, which can be viewed as a system coupling the hyperbolic-type equations for the Q-tensor parameter with the incompressible Navier–Stokes equations for the fluid velocity. We prove the existence and uniqueness of local in time strong solutions to the system with the initial data near uniaxial equilibrium. The proof is mainly based on the classical Friedrich method to construct approximate solutions and the closed energy estimate.


Sign in / Sign up

Export Citation Format

Share Document