scholarly journals Summary of the Internal Pressure Capacity of Prestress Concrete Containment Vessel (PCCV)

2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Chaobi Zhang
Author(s):  
Masanori Ando ◽  
Hiroki Yada ◽  
Kazuyuki Tsukimori ◽  
Masakazu Ichimiya ◽  
Yoshinari Anoda

Containment vessel is an important structure to prevent a significant and sudden radioactive release, however, the safety margin of the containment vessel against the internal or external pressure are not numerically clarified. Namely, the safety margins due to the relationship of the ultimate toughness of containment vessel structures and maximum design pressure is not clear. Indeed, to clarify the progress of the events under the beyond design basis events (BDBE) and to design the BDBE countermeasure equipment, it is necessary to evaluate the pressure toughness of containment vessel adequately. The containment vessel of fast reactor is composed of the various structures, and one of the thinnest boundary structures is bellows structure to absorb the thermal expansion of the coolant piping penetrating the containment vessel. In addition to the containment vessel boundary, evaluating the pressure toughness of reactor coolant and gas boundary is also important because of same reason of that in the containment vessel boundary. In the primary coolant and gas boundary, the cover gas bellows of the intermediate heat exchanger in fast reactor is one of the thinnest structures and has important role when the progress of the BDBE is considered. Therefore, in order to develop the evaluation method of the pressure toughness of bellows structure under the BDBE, the pressure failure tests and finite element analysis of the bellows structure subjected to internal pressure were performed in this study.


Author(s):  
Tsu-Te Wu

This paper presents a numerical technique for analyzing the containment vessel subjected to the combined loading of closure-bolt torque and internal pressure. The detailed stress distributions in the O-rings generated by both the torque load and the internal pressure can be evaluated by using this method. Consequently, the sealing performance of the O-rings can be determined. The material of the O-rings can be represented by any available constitutive equation for hyperelastic material. In the numerical calculation of this paper, the form of the Mooney-Rivlin strain energy potential is used. The technique treats both the preloading process of bolt tightening and the application of internal pressure as slow dynamic loads. Consequently, the problem can be evaluated using explicit numerical integration scheme.


Author(s):  
Neal M. Askew ◽  
Steve J. Hensel ◽  
James E. Laurinat ◽  
T. Eric Skidmore

Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.


Sign in / Sign up

Export Citation Format

Share Document