numerical integration scheme
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
pp. 108128652110679
Author(s):  
Emilio Turco

In this contribution, a novel nonlinear micropolar beam model suitable for metamaterials design in a dynamics framework is presented and discussed. The beam model is formulated following a completely discrete approach and it is fully defined by its Lagrangian, i.e., by the kinetic energy and by the potential of conservative forces. Differently from Hencky’s seminal work, which considers only flexibility to compute the buckling load for rectilinear and planar Euler–Bernoulli beams, the proposed model is fully three-dimensional and considers both the extensional and shear deformability contributions to the strain energy and translational and rotational kinetic energy terms. After having introduced the model formulation, some simulations obtained with a numerical integration scheme are presented to show the capabilities of the proposed beam model.


2021 ◽  
pp. 136943322110585
Author(s):  
Anita Ogrin ◽  
Igor Planinc ◽  
Sebastjan Bratina

The paper presents a novel family of strain-based beam finite elements (FE) for analysis of tensile failure of a reinforced concrete bar (RC bar), with results of the analysis being independent of the applied FE mesh. The composite bar consists of a continuous longitudinal ductile reinforcing bar(s) surrounded by brittle concrete cover, which are considered separately in the model. Longitudinal slip at the contact between the concrete cover and reinforcing bars is allowed, while their relative displacements perpendicular to the axis of the RC bar are prevented. Cracks in concrete cover occur when tensile stress in concrete exceeds its tensile strength. Propagation of partially connected crack, that is, softening of the material at the crack, is described through constitutive law in form of nonlinear relationship between stresses in concrete at the crack and the width of the crack. Each separate crack is considered discretely as a discontinuity in geometry of the element. In the analysis of cracking of concrete, it is commonly assumed that the discrete crack can occur at the nodes of FE only. However, this assumption leads to dependence of the analysis results on the employed FE mesh. The presented family of FE enables occurrence of the crack anywhere along the FE. In order to achieve this, the discrete crack is excluded from equations of FE and additional boundary conditions are introduced at the discontinuity. This approach ensures that the location of the cracks, their number and their propagation are independent of the applied FE mesh. Advantages of the novel family of FE are thoroughly presented in a parametric study which investigates influence of number of FE as well as influence of degrees of interpolation and integration on the cracking of RC bar under tensile loading. Experimental results of tensile tests on the analysed bar are available in literature. It can be concluded that the results obtained with the minimal possible number of novel FE and sufficiently high degree of numerical integration scheme, applied for solving integrals in equations of FE, are considerably more accurate than the results of previous analyses with model of discrete crack at the nodes of FE only.


Author(s):  
Johannes Blühdorn ◽  
Nicolas R. Gauger ◽  
Matthias Kabel

AbstractWe propose a universal method for the evaluation of generalized standard materials that greatly simplifies the material law implementation process. By means of automatic differentiation and a numerical integration scheme, AutoMat reduces the implementation effort to two potential functions. By moving AutoMat to the GPU, we close the performance gap to conventional evaluation routines and demonstrate in detail that the expression level reverse mode of automatic differentiation as well as its extension to second order derivatives can be applied inside CUDA kernels. We underline the effectiveness and the applicability of AutoMat by integrating it into the FFT-based homogenization scheme of Moulinec and Suquet and discuss the benefits of using AutoMat with respect to runtime and solution accuracy for an elasto-viscoplastic example.


Author(s):  
Shyjo Johnson ◽  
T. Jeyapoovan ◽  
D. Nagarajan

This research paper focuses on the objective of developing a quadrature for evaluating the element stiffness matrix for the four-node quadrilateral element in finite element analysis (FEA). The proposed integration scheme is defined as an element edge method (EEM), which mimics the Gauss numerical integration scheme. This integration scheme consists of five sampling points and weights where four integration point locations are at the edges and one is at the center of the quadrilateral element. The proposed quadrature scheme has been tested using various benchmarked problems designed by various researchers to study the convergence of the results, accuracy of results, and stability of values.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1862
Author(s):  
Sanda Micula

This paper presents a numerical iterative method for the approximate solutions of nonlinear Volterra integral equations of the second kind, with weakly singular kernels. We derive conditions so that a unique solution of such equations exists, as the unique fixed point of an integral operator. Iterative application of that operator to an initial function yields a sequence of functions converging to the true solution. Finally, an appropriate numerical integration scheme (a certain type of product integration) is used to produce the approximations of the solution at given nodes. The resulting procedure is a numerical method that is more practical and accessible than the classical approximation techniques. We prove the convergence of the method and give error estimates. The proposed method is applied to some numerical examples, which are discussed in detail. The numerical approximations thus obtained confirm the theoretical results and the predicted error estimates. In the end, we discuss the method, drawing conclusions about its applicability and outlining future possible research ideas in the same area.


Author(s):  
Márton Petö ◽  
Fabian Duvigneau ◽  
Daniel Juhre ◽  
Sascha Eisenträger

Abstract Polygonal finite elements offer an increased freedom in terms of mesh generation at the price of more complex, often rational, shape functions. Thus, the numerical integration of rational interpolants over polygonal domains is one of the challenges that needs to be solved. If, additionally, strong discontinuities are present in the integrand, e.g., when employing fictitious domain methods, special integration procedures must be developed. Therefore, we propose to extend the conventional quadtree-decomposition-based integration approach by image compression techniques. In this context, our focus is on unfitted polygonal elements using Wachspress shape functions. In order to assess the performance of the novel integration scheme, we investigate the integration error and the compression rate being related to the reduction in integration points. To this end, the area and the stiffness matrix of a single element are computed using different formulations of the shape functions, i.e., global and local, and partitioning schemes. Finally, the performance of the proposed integration scheme is evaluated by investigating two problems of linear elasticity.


Author(s):  
Huimin Zhang ◽  
Runsen Zhang ◽  
Andrea Zanoni ◽  
Pierangelo Masarati

Abstract A novel single-step time integration method is proposed for general dynamic problems. From linear spectral analysis, the new method with optimal parameters has second-order accuracy, unconditional stability, controllable algorithmic dissipation and zero-order overshoot in displacement and velocity. Comparison of the proposed method with several representative implicit methods shows that the new method has higher accuracy than the single-step generalized-α method, and also than the composite P∞-Bathe method when mild algorithmic dissipation is used. Besides, this method is spectrally identical to the linear two-step method, although being easier to use since it does not need additional start-up procedures. Its numerical properties are assessed through numerical examples, and the new method shows competitive performance for both linear and nonlinear problems.


Sign in / Sign up

Export Citation Format

Share Document