scholarly journals A Simple Iterative Method for Exact Solution of Systems of Linear Algebraic Equations

2014 ◽  
Vol 989-994 ◽  
pp. 4934-4939
Author(s):  
Xiao Guang Ren ◽  
Wen Hao Zhou ◽  
Juan Chen

With the development of the electronic technology, the processors count in a supercomputer reaches million scales. However, the processes scale of a application is limited to several thousands, and the scalability face a bottle neck from several aspects, including I/O, communication, cache access .etc. In this paper, we focus on the communication bottleneck to the scalability of linear algebraic equation solve. We take preconditioned conjugate gradient (PCG) as an example, and analysis the feathers of the communication operations in the process of PCG solver. We find that reduce communication is the most critical issue for the scalability of the parallel iterative method for linear algebraic equation solve. We propose a local residual error optimization scheme to eliminate part of the reduce communication operations in the parallel iterative method, and improve the scalability of the parallel iterative method. Experimental results on the Tianhe-2 supercomputer demonstrate that our optimization scheme can achieve a much signally effect for the scalability of the linear algebraic equation solve.


2016 ◽  
Author(s):  
Vladimir Manichev ◽  
Valentina Glazkova ◽  
Кузьмина Анастасия

In the manual classical numerical methods are considered and algorithms for the decision of systems of the ordinary differential equations (ODE), nonlinear and linear algebraic equations (NAU and LAU), and also ways of ensuring reliability and demanded accuracy of results of the decision. Ideas, which still not are stated are reflected in textbooks on calculus mathematics, namely: decision systems the ODE without reduction to a normal form of Cauchy resolved rather derivative, and refusal from any numerical an equivalent - nykh of transformations of the initial equations of mathematical models and is- the hodnykh of data because such transformations can change properties of models at a variation of coefficients in corresponding urav- neniyakh. It is intended for students, graduate students and teachers of higher education institutions in the direction of preparation "Informatics and computer facilities". The grant will also be useful for engineers and scientists on the corresponding specialties.


Sign in / Sign up

Export Citation Format

Share Document