scholarly journals Symmetric Logarithmic Derivative of Fermionic Gaussian States

Author(s):  
Angelo Carollo ◽  
Bernardo Spagnolo ◽  
Davide Valenti

In this article we derive a closed form expression for the symmetric logarithmic derivative of Fermionic Gaussian states. This provides a direct way of computing the quantum Fisher Information for Fermionic Gaussian states. Applications range from quantum Metrology with thermal states to non-equilibrium steady states with Fermionic many-body systems.

Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Angelo Carollo ◽  
Bernardo Spagnolo ◽  
Davide Valenti

In this article we derive a closed form expression for the incompatibility condition in multi-parameter quantum metrology when the reference states are Fermionic Gaussian states. Together with the quantum Fisher information, the knowledge of the compatibility condition provides a way of designing optimal measurement strategies for multi-parameter quantum estimation. Applications range from quantum metrology with thermal states to non-equilibrium steady states with Fermionic and spin systems.


Author(s):  
Bo Liu ◽  
GuoLong Li ◽  
YanMing Che ◽  
Jie Chen ◽  
XiaoGuang Wang

Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1182 ◽  
Author(s):  
Onat Arısoy ◽  
Steve Campbell ◽  
Özgür E. Müstecaplıoğlu

We construct a collision model description of the thermalization of a finite many-body system by using careful derivation of the corresponding Lindblad-type master equation in the weak coupling regime. Using the example of a two-level target system, we show that collision model thermalization is crucially dependent on the various relevant system and bath timescales and on ensuring that the environment is composed of ancillae which are resonant with the system transition frequencies. Using this, we extend our analysis to show that our collision model can lead to thermalization for certain classes of many-body systems. We establish that for classically correlated systems our approach is effective, while we also highlight its shortcomings, in particular with regards to reaching entangled thermal states.


2014 ◽  
Vol 90 (5) ◽  
Author(s):  
Yoshifumi Nakata ◽  
Tobias J. Osborne

1999 ◽  
Vol 121-122 ◽  
pp. 729
Author(s):  
E. Romera ◽  
J.C. Angulo ◽  
J.S. Dehesa

2021 ◽  
Vol 3 (1) ◽  
pp. 228-241
Author(s):  
Rahul Raj ◽  
Shreya Banerjee ◽  
Prasanta K. Panigrahi

Measurements leading to the collapse of states and the non-local quantum correlations are the key to all applications of quantum mechanics as well as in the studies of quantum foundation. The former is crucial for quantum parameter estimation, which is greatly affected by the physical environment and the measurement scheme itself. Its quantification is necessary to find efficient measurement schemes and circumvent the non-desirable environmental effects. This has led to the intense investigation of quantum metrology, extending the Cramér–Rao bound to the quantum domain through quantum Fisher information. Among all quantum states, the separable ones have the least quantumness; being devoid of the fragile non-local correlations, the component states remain unaffected in local operations performed by any of the parties. Therefore, using these states for the remote design of quantum states with high quantum Fisher information can have diverse applications in quantum information processing; accurate parameter estimation being a prominent example, as the quantum information extraction solely depends on it. Here, we demonstrate that these separable states with the least quantumness can be made extremely useful in parameter estimation tasks, and further show even in the case of the shared channel inflicted with the amplitude damping noise and phase flip noise, there is a gain in Quantum Fisher information (QFI). We subsequently pointed out that the symmetric W states, incapable of perfectly teleporting an unknown quantum state, are highly effective for remotely designing quantum states with high quantum Fisher information.


Author(s):  
Volkan Erol

Entanglement is at the heart of quantum technologies such as quantum information and quantum metrology. Providing larger quantum Fisher information (QFI), entangled systems can be better resources than separable systems in quantum metrology. QFI topic is a very active research area and it has many possible usage areas in quantum information domain. In this study, we review quantum Fisher information research with both from theoritical and application perspective.


Author(s):  
Aaron Z. Goldberg ◽  
José L. Romero ◽  
Ángel S. Sanz ◽  
Luis L. Sánchez-Soto

Quantum Fisher information matrices (QFIMs) are fundamental to estimation theory: they encode the ultimate limit for the sensitivity with which a set of parameters can be estimated using a given probe. Since the limit invokes the inverse of a QFIM, an immediate question is what to do with singular QFIMs. Moreover, the QFIM may be discontinuous, forcing one away from the paradigm of regular statistical models. These questions of nonregular quantum statistical models are present in both single- and multiparameter estimation. Geometrically, singular QFIMs occur when the curvature of the metric vanishes in one or more directions in the space of probability distributions, while QFIMs have discontinuities when the density matrix has parameter-dependent rank. We present a nuanced discussion of how to deal with each of these scenarios, stressing the physical implications of singular QFIMs and the ensuing ramifications for quantum metrology.


Sign in / Sign up

Export Citation Format

Share Document