scholarly journals Time Wavelength Interleaving Perceptron at 12 Giga-Ops/s with a Kerr Soliton Crystal Microcomb for Optical Neural Networks

Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
David Moss

Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 109 operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.

2021 ◽  
Author(s):  
mengxi tan ◽  
xingyuan xu ◽  
David Moss

Abstract Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 109 operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.


2021 ◽  
Author(s):  
David Moss

<p>Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 10<sup>9</sup> operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing. </p>


2021 ◽  
Author(s):  
David Moss

<p>Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 10<sup>9</sup> operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing. </p>


2021 ◽  
Author(s):  
David Moss

Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 109 operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.


2020 ◽  
Author(s):  
David Moss

Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.


2020 ◽  
Author(s):  
David Moss

Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.


2021 ◽  
Author(s):  
David Moss

Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.


Author(s):  
Xingyuan Xu ◽  
Mengxi Tan ◽  
David Moss

Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN &mdash; a single neuron perceptron &mdash; by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection &mdash; achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.


2020 ◽  
Author(s):  
David Moss

Optical artificial neural networks (ONNs) — analog computing hardware tailored for machine learning [1, 2] — have significant potential for ultra-high computing speed and energy efficiency [3]. We propose a new approach to architectures for ONNs based on integrated Kerr micro-comb sources [4] that is programmable, highly scalable and capable of reaching ultra-high speeds. We experimentally demonstrate the building block of the ONN — a single neuron perceptron — by mapping synapses onto 49 wavelengths of a micro-comb to achieve a high single-unit throughput of 11.9 Giga-FLOPS at 8 bits per FLOP, corresponding to 95.2 Gbps. We test the perceptron on simple standard benchmark datasets — handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. This performance is a direct result of the record small wavelength spacing (49GHz) for a coherent integrated microcomb source, which results in an unprecedented number of wavelengths for neuromorphic optics. Finally, we propose an approach to scaling the perceptron to a deep learning network using the same single micro-comb device and standard off-the-shelf telecommunications technology, for high-throughput operation involving full matrix multiplication for applications such as real-time massive data processing for unmanned vehicle and aircraft tracking.


2020 ◽  
Author(s):  
David Moss ◽  
xingyuan xu ◽  
mengxi tan ◽  
Jiayang Wu ◽  
Roberto Morandotti

<p><b>Optical artificial neural networks (ONNs) — analog computing hardware tailored for machine learning — have significant potential for ultra-high computing speed and energy efficiency. We propose a new approach to architectures for ONNs based on integrated Kerr micro-comb sources that is programmable, highly scalable and capable of reaching ultra-high speeds. We experimentally demonstrate the building block of the ONN — a single neuron perceptron — by mapping synapses onto 49 wavelengths of a micro-comb to achieve a high single-unit throughput of 11.9 Giga-FLOPS at 8 bits per FLOP, corresponding to 95.2 Gbps. We test the perceptron on simple standard benchmark datasets — handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. This performance is a direct result of the record small wavelength spacing (49GHz) for a coherent integrated microcomb source, which results in an unprecedented number of wavelengths for neuromorphic optics. Finally, we propose an approach to scaling the perceptron to a deep learning network using the same single micro-comb device and standard off-the-shelf telecommunications technology, for high-throughput operation involving full matrix multiplication for applications such as real-time massive data processing for unmanned vehicle and aircraft tracking. </b></p>


Sign in / Sign up

Export Citation Format

Share Document