scholarly journals Electrochemical Investigation of the Solid-State Reference Electrode Based on Activate Carbon for Corrosion Monitoring of Reinforced Concrete Structures

Author(s):  
Wei He ◽  
2010 ◽  
Vol 163-167 ◽  
pp. 2945-2948
Author(s):  
Li Juan Kong ◽  
Tong Zhang ◽  
Guang Pin Song

Corrosion of steel structures has been found to be a problem Corrosion can be managed but not eliminated, so detecting corrosion will remain an issue no matter how effective corrosion prevention programs become. Electrochemical reaction is the basically process of steel corrosion in civil engineering, so electrochemical method is the best way to monitor corrosion grade. Liquid state reference is often used in lab to study steel corrosion by triple electrode system, but it is very difficultly used in steel bar corrosion monitoring in civil engineering. Firstly, liquid reference’s life is, generally speaking, very short. The steel corrosion is a very slow process, corrosion monitoring should be tens of years, so the liquid reference’s life is not long enough for corrosion monitoring; Secondly, the reference electrode’s strength have to be very high. Obviously, liquid electrode reference can not meet the requirement. In this paper, a novel all solid state reference electrode (ASSRE) has been developed. There are three layers in the electrode. Four kinds of components have been included in first and second layer. Additional AgCl powder has been used to inhibit AgCl decrease which is on the surface of Ag wire by complexing effect. There is only one kind of component in third layer. There are four steps to prepare the reference electrode: electrolyze, pre-mixed components, modelling and sintering. Finally, the potential of ASSR has been measured by SCE.


Author(s):  
Shivprakash Iyer ◽  
Andrea J. Schokker ◽  
Sunil K. Sinha

Corrosion of the nation’s transportation infrastructure is a widespread and costly problem. The most prevalent durability issue in reinforced concrete structures is chloride-induced corrosion of the reinforcing steel. A reliable method of determining grout voids and corrosion levels in posttensioned bridge structures is needed. Traditional techniques of corrosion monitoring (e.g., half-cell potential and corrosion rate measurement) are problematic when used in this type of structure, as are standard nondestructive evaluation (NDE) methods, such as impact echo. C-scan imaging, an ultrasonic technique used primarily in the composites industry for detecting delamination, is examined as a method of evaluating grouted posttensioned tendons. This method exhibits many promising qualities: it can be used for internal or external tendons and on metal or plastic ducts; access to only one side of a specimen is required; strong imaging allows easy interpretation of results; the technique poses no risk to users or the environment; and the method has strong potential for development as a handheld field tool. The C-scan technique may be valuable for the investigation of not only posttensioning applications but other types of reinforced concrete structures as well. Results of preliminary investigations on lab specimens indicate that the C-scan technique holds promise. The ultimate goal of the research is to provide a user-friendly, robust system for the NDE of posttensioned tendons for voids, corrosion, and wire breaks. Recommendations for optimal acquisition and processing techniques as well as for the future development of the equipment as a field tool are proposed.


Sign in / Sign up

Export Citation Format

Share Document