Discrete-Time Uncertain LQ Optimal Control with Indefinite Control Weight Costs

Author(s):  
Yuefen Chen ◽  
◽  
Liubao Deng ◽  

This paper deals with a discrete-time uncertain linear quadratic (LQ) optimal control, where the control weight costs are indefinite . Based on Bellman’s principle of optimality, the recurrence equation of the uncertain LQ optimal control is proposed. Then, by using the recurrence equation, a necessary condition of the optimal state feedback control for the LQ problem is obtained. Moreover, a sufficient condition of well-posedness for the LQ problem is presented. Furthermore, an algorithm to compute the optimal control and optimal value is provided. Finally, a numerical example to illustrate that the LQ problem is still well-posedness with indefinite control weight costs.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guiling Li ◽  
Weihai Zhang

This paper studies the indefinite stochastic linear quadratic (LQ) optimal control problem with an inequality constraint for the terminal state. Firstly, we prove a generalized Karush-Kuhn-Tucker (KKT) theorem under hybrid constraints. Secondly, a new type of generalized Riccati equations is obtained, based on which a necessary condition (it is also a sufficient condition under stronger assumptions) for the existence of an optimal linear state feedback control is given by means of KKT theorem. Finally, we design a dynamic programming algorithm to solve the constrained indefinite stochastic LQ issue.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Yuefen Chen ◽  
Minghai Yang

Uncertainty theory is a branch of mathematics for modeling human uncertainty based on the normality, duality, subadditivity, and product axioms. This paper studies a discrete-time LQ optimal control with terminal state constraint, whereas the weighting matrices in the cost function are indefinite and the system states are disturbed by uncertain noises. We first transform the uncertain LQ problem into an equivalent deterministic LQ problem. Then, the main result given in this paper is the necessary condition for the constrained indefinite LQ optimal control problem by means of the Lagrangian multiplier method. Moreover, in order to guarantee the well-posedness of the indefinite LQ problem and the existence of an optimal control, a sufficient condition is presented in the paper. Finally, a numerical example is presented at the end of the paper.


1991 ◽  
Vol 113 (2) ◽  
pp. 206-215 ◽  
Author(s):  
V. Yen ◽  
M. Nagurka

A method for determining the optimal control of unconstrained and linearly constrained linear dynamic systems with quadratic performance indices is presented. The method is based on a modified Fourier series approximation of each state variable that converts the linear quadratic (LQ) problem into a mathematical programming problem. In particular, it is shown that an unconstrained LQ problem can be cast as an unconstrained quadratic programming problem where the necessary condition of optimality is derived as a system of linear algebraic equations. Furthermore, it is shown that a linearly constrained LQ problem can be converted into a general quadratic programming problem. Simulation studies for constrained LQ systems, including a bang-bang control problem, demonstrate that the approach is accurate. The results also indicate that in solving high order unconstrained LQ problems the approach is computationally more efficient and robust than standard methods.


1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jie Xu ◽  
Ruiqiang Lin

In this paper, we study a kind of near optimal control problem which is described by linear quadratic doubly stochastic differential equations with time delay. We consider the near optimality for the linear delayed doubly stochastic system with convex control domain. We discuss the case that all the time delay variables are different. We give the maximum principle of near optimal control for this kind of time delay system. The necessary condition for the control to be near optimal control is deduced by Ekeland’s variational principle and some estimates on the state and the adjoint processes corresponding to the system.


Sign in / Sign up

Export Citation Format

Share Document