Current Status of Postseismic Deformation Following the 2011 Tohoku-Oki Earthquake

2018 ◽  
Vol 13 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Hisashi Suito ◽  

Postseismic deformation following the 2011 Tohoku-Oki earthquake has been observed by the Global Navigation Satellite System (GNSS) Earth Observation Network System (GEONET) and the Seafloor Geodetic Observation (SGO) over the past six and half years. Observed deformation at onshore sites exceeds 140 cm horizontally, there is uplift of 50 cm, and deformation tends eastward. However, offshore sites reveal complex patterns ranging from near-zero deformation in the northern part of Iwate-Oki, to westward in the southern part of Iwate-Oki, Miyagi-Oki, and the northern part of Fukushima-Oki regions, and eastward in the southern part of Fukushima-Oki and Ibaraki-Oki regions, respectively. The vertical deformation pattern is more complex than the horizontal. Offshore sites demonstrate subsidence but a large uplift is observed onshore along the Pacific coast. Subsidence is only observed along the Pacific coast in the northern part of Iwate, where there are variations in uplift or subsidence patterns. Many previous 2011 Tohoku-Oki event studies have used a primary model that considers only the afterslip effect. However, westward displacements observed by the SGO highlight the importance of viscoelastic relaxation, even during short-term deformation. It is thus considered that studies on postseismic deformation following the 2011 Tohoku-Oki earthquake should adopt a combined afterslip and viscoelastic model. Postseismic deformation following this event is estimated to continue for more than a few decades; therefore, assessing this effect is crucial for interpreting crustal deformation in Japan. Information on the status of interplate coupling or slip is also vital when assessing earthquake occurrence probability. The continued observation of postseismic deformation and careful monitoring of temporal and spatial changes in interplate coupling or slip will mitigate hazards from successive large megathrust earthquakes and improve understanding of crustal activity in Japan.

2014 ◽  
Vol 9 (3) ◽  
pp. 294-302 ◽  
Author(s):  
Takuya Nishimura ◽  

The 2011 Tohoku-oki earthquake caused large eastward displacement and subsidence along the Pacific coast of northeastern Japan. This earthquake partly solved a well-known paradox holding that sense and rate of deformation differ greatly between geologic and geodetic estimates. A paradox remains, however, in explaining long-term uplift along the Pacific coast on a geologic time-scale. Geodetic data show that coastal subsidence continued at a nearly constant rate of ∼5 mm/yr with small fluctuations associated with M7-8 interplate earthquakes for ∼120 years before the Tohoku-oki earthquake. In an area near the Oshika Peninsula where coseismic subsidence is largest, extrapolation of a logarithmic function fitting observed postseismic deformation suggests that coseismic subsidence may be compensated for by the postseismic uplift for several decades but it is difficult to expect the postseismic uplift exceeding 2 meters, so it is implausible that the observed rapid subsidence continued throughout an entire interseismic period in a great megathrust earthquake cycle. We propose a hypothetical model in which the sense of vertical deformation changes from uplift to subsidence during the interseismic period. Using simple elastic dislocation theory, this model is explained by the shallow coupled part of a plate interface in an early interseismic period and the deep coupled part of a late interseismic period.


2011 ◽  
Vol 63 (7) ◽  
pp. 697-701 ◽  
Author(s):  
Kiyoshi Yomogida ◽  
Kazunori Yoshizawa ◽  
Junji Koyama ◽  
Motohiro Tsuzuki

PMLA ◽  
1935 ◽  
Vol 50 (4) ◽  
pp. 1373-1374

The thirty-seventh annual meeting of the Philological Association of the Pacific Coast was held at Stanford University, California, on November 29 and 30, 1935.


2012 ◽  
Vol 64 (2) ◽  
pp. 181-195 ◽  
Author(s):  
Jan Borovička ◽  
Alan Rockefeller ◽  
Peter G. Werner
Keyword(s):  

2011 ◽  
Author(s):  
Sarah G. Allen ◽  
Joe Mortenson ◽  
Sophie Webb

Sign in / Sign up

Export Citation Format

Share Document