plate interface
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 142)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Emmy Tsui-Yu CHANG ◽  
Laetitia Mozziconacci

Abstract Faulting in subducting plates is a critical process that changes the mechanical properties the subducting lithosphere and serves as a carrier of surface materials into mantle wedges. Two intraplate earthquake sequences located in the northern Manila subduction system were investigated in this study, which revealed distinct fault planes but a contrasting seismogeny over the northern Manila Trench. The seismic sequences analyzed in this study were of small-to-moderate events. The events were separately acquired by two ocean-bottom seismometer networks deployed on the frontal accretionary wedge in 2005 and the outer trench slope in 2006. The retrieved seismicity in the frontal wedge (in 2005) mainly included the overpressured sequence, whereas that in the approaching plate (in 2006) was aftershocks of an extensional faulting sequence. The obtained seismic velocity models and Vp/Vs ratios revealed that the overpressure was likely caused by dehydration within the shallow subduction zone. By using the near-field waveform inversion algorithm, we determined focal mechanism solutions for a few relatively large earthquakes. Data from global seismic observations were also used to conclude that stress transfer may be responsible for the seismic activity in the study area in 2005–2006. In late 2005, the plate interface in the frontal wedge area was unlocked by overpressure effect with the thrusting-dominant sequence. This event changed the stress regime across the Manila Trench and triggered the normal fault extension at the outer trench slope in mid-2006. However, the hybrid focal solution indicating reverse and strike-slip mechanisms provided in this study revealed that the plate interface had become locked again in late 2006.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Yunzan Ma ◽  
Weijiang Yang ◽  
Qi Liu ◽  
Kejia Liu ◽  
Kun Chen

In this paper, the interface microstructure, elements’ diffusion features at the interface, and bonding properties in nickel-based alloy/carbon steel clad composite prepared by vacuum hot-roll bonding were investigated, comprehensively. The influence of element distribution on the interface bonding strength was revealed as well. The results showed that there was a 13 μm thick diffusion layer at the interface of nickel-based alloy/carbon steel composite plate, which was beneficial to a strong bond between nickel-based alloy and carbon steel, as well as the stable transition of mechanical properties in the thickness direction. Kirkendall voids and fine-grained structure (the grain size is about 41.5 nm) were observable by peeling off the nickel-based alloy cladding, which greatly promoted element diffusion and enhanced the interfacial bonding strength of the nickel-based alloy/carbon steel composite plate. The diffusion coefficient of Ni at the interface was about 2 orders of magnitude larger than that of nanocrystalline Fe. The shear strength reached up to 453 MPa, which was much higher than the minimum of 140 MPa defined in ASTM A-264 specifications. Furthermore, in the shear test, the fracture occurred on the X52 carbon steel side at the contact rather than at the composite plate interface.


2022 ◽  
Author(s):  
Tuhin Biswas ◽  
Narayan Bose ◽  
Dripta Dutta ◽  
Soumyajit Mukherjee

Interest in hydrocarbon exploration from the the Lesser Himalayan Sequence (LHS) has recently been revived amongst petroleum geoscientists. Understanding the paleostress regime and the deformation processes are the two important steps to understand the structural geology of any (petroliferous) terrane. Arc-parallel shear is an integral deformation process in orogeny. The scale of the consequent deformation features can range from micro-mm up to regional scale. Unlike orogen-perpendicular shear, different driving forces can produce orogen-parallel shears. We review these mechanisms/theories from several orogens including the Himalaya and compile 44 locations worldwide with reported orogen-parallel shear. Due to continuous crustal shortening by the India-Eurasia collision, the squeezed rock mass at the plate interface has produced the Himalayan Mountain chain. In addition, the rock mass also escapes laterally along the orogenic trend. Tectonic stress-field governs this mass flow. Field study and microstructural analysis in the northwest LHS (India) reveals orogen-parallel brittle and ductile shear movement. Y- and P- brittle shear planes, and the S- and C- ductile shear planes reveal the following shears documented on the ~ NW-SE trending natural rock selections: (i) top-to-NW up, (ii) top-to-SE up, (iii) top-to-NW down, and (iv) top-to-SE down. Our paleostress analysis indicates top-to-SE down and top-to-NW down shears occurred due to stretching along ~ 131°-311° (Dext), whereas top-to-SE up and top-to-NW up shear fabric originated due to shortening along ~133.5°-313.5° (Dcompr). Previous authors considered that the orogen-parallel extension generated ~ 15-5 Ma due to vertical thinning of the Himalaya. The NE-trending Delhi-Haridwar Ridge below the LHS plausibly acted as a barrier to the flowing mass and piled up the rock mass in the form of NW-SE/orogen-parallel compression. The NW-SE compression can be correlated with the D3 of Hintersberger et al. (2011) during ~ 4-7 Ma.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Wen Nie ◽  
Duanyi Wang ◽  
Yangguang Sun ◽  
Wei Xu ◽  
Xiaoquan Xiao

To comprehensively investigate the integrated structural and material design of the epoxy asphalt mixture used in steel bridge deck pavement, the following works have been conducted: 1. The strain level of steel bridge deck pavement was calculated; 2. The ultimate strain level of fatigue endurance for epoxy asphalt concrete was measured; 3. The effect of water tightness of epoxy asphalt mixture on the bonding performance of steel plate interface was tested. 4. For better performance evaluation, quantitative analysis of the anti-skid performance of epoxy asphalt mixture was carried out by testing the structure depth using a laser texture tester. Results show the following findings: 1. The fatigue endurance limit strain level of epoxy asphalt mixture (600 με) was higher than that of the steel bridge deck pavement (<300 με), indicating that the use of epoxy asphalt concrete has better flexibility and can achieve a longer service life in theory; 2. The epoxy asphalt concrete has significant water tightness to protect the steel plate interface from corrosion and ensure good bonding performance; 3. The porosity of epoxy asphalt mixture used in steel bridge deck paving should be controlled within 3%; 4. In terms of anti-skid performance of bridge deck pavement, the FAC-10 graded epoxy asphalt mixture is recommended when compared with EA-10C.


2021 ◽  
Author(s):  
Nadaya Cubas ◽  
Philippe Agard ◽  
Roxane Tissandier

Abstract. What controls the location and segmentation of mega-earthquakes in subduction zones is a long-standing problem in earth sciences. Prediction of earthquake ruptures mostly relies on interplate coupling models based on Global Navigation Satellite Systems providing patterns of slip deficit between tectonic plates. We here investigate if and how the seismic and aseismic patches revealed by these models relate to the distribution of deformation along the plate interface, i.e. basal erosion and/or underplating. From a mechanical analysis of the topography applied along the Chilean subduction zone, we show that extensive plate interface deformation takes place along most of the margin. We show that basal erosion occurs preferentially at 15 km depth while underplating does at 35 ± 10 and 60 ± 5 km depth, in agreement with P-T conditions of recovered underplated material, expected pore pressures, and spatial distribution of marine terraces and uplift rates. Along southern Chile, large sediment input favors shallow accretion and underplating of subducted sediments, while along northern Chile, extensive basal erosion provides material for the underplating. We then show that all major earthquakes of southern Chile are limited along their down-dip end by underplating while, along northern Chile, they are surrounded by both basal erosion and underplating. Segments with heterogeneously distributed deformation largely coincide with lateral earthquake terminations. We therefore propose that long-lived plate interface deformation promotes stress build-up and leads to earthquake nucleation. Earthquakes then propagate along fault planes shielded from this long-lived permanent deformation, and are finally stopped by segments of heterogeneously distributed deformation. Slip deficit patterns and earthquake segmentation therefore reflect the along-dip and along-strike distribution of the plate interface deformation. Topography acts as a mirror of distributed plate interface deformation and should be studied systematically to improve the prediction of earthquake ruptures.


Author(s):  
Zhichao Geng ◽  
Ping Zhou ◽  
Lei Meng ◽  
Ying Yan ◽  
Dongming Guo

Abstract Lapping has a history of hundreds of years, yet it still relies on the experience of workers. To improve the automaticity and controllability of the lapping process, a modeling method of friction and wear is developed to predict the surface profile evolution of the workpiece and lapping plate in the lapping process. In the proposed method, by solving the balance equations of resultant force and moment, the inclination angles of the workpiece can be calculated, thus more accurate contact pressure distribution of the workpiece/lapping plate interface can be calculated. Combined with the material removal rate model, the continuous evolution process of the workpiece and lapping plate can be predicted in the lapping process. The modeling method was validated by a lapping test of a flat optical glass (Φ 100 mm) with a composite copper plate. The results show that the proposed method can predict the evolution of the surface profile of the workpiece and lapping plate with high accuracy. Consequently, the lapping plate can be dressed at the right time point. Benefit from this, in the validation test the PV value of the workpiece (with 5 mm edge exclusion) was reduced from 5.279 μm to 0.267 μm in 30 min. The proposed surface profile evolution modeling method not only improves the lapping efficiency but also provides an opportunity to understand the lapping process.


2021 ◽  
Author(s):  
◽  
Danielle Lindsay

<p>Secretary Island, at the head of Doubtful Sound in Fiordland, has been seismically active in past 30 years, with earthquakes larger than M w 6.5: the 1989 Doubtful Sound, 1993 Secretary Island, and 2003 Fiordland earthquakes. These events were approximately coincident with the 17° bend in the strike of the young, obliquely-converging, and steeply dipping Puysegur Subduction Zone. This section of the plate interface also has a history of triggered slip: the 1989 earthquake is inferred to have triggered the 1993 earthquake and, further north at George Sound, triggered afterslip was reported following the 2009 Dusky Sound earthquake. We have used L-band (23.6 cm-wavelength) Synthetic Aperture Radar (SAR) data from the ALOS1 and ALOS2 satellites, and C-band (5.5 cm-wavelength) SAR data from Sentinel 1A/B satellites, to test the hypothesis that triggered slip also occurred in the vicinity of Secretary Island following the 2007 George Sound, 2009 Dusky Sound and 2016 Kaikōura earthquakes. SAR images were aligned, interfered, filtered, and unwrapped using GMTSAR processing tools. Long-wavelength ionosphere noise was removed by inverting for the best-fitting linear plane, and we assumed a linear function of height to remove short-wavelength atmospheric noise. Small Baseline Subset (SBAS) timeseries analysis indicated a localised deformation signal centred on Secretary Island following the Dusky Sound earthquake. A re-analysis was undertaken of the co- and post-seismic deformation caused by the Dusky Sound earthquake so that any surface deformation centred on Secretary Island could be isolated. Campaign and continuous Global Positioning System (GPS) data were simultaneously inverted with co- and post-seismic interferograms using a statistical Bayesian modelling approach to determine the optimal Dusky Sound earthquake source parameters. Limitations arising from orbital drift, the frequency of SAR acquisitions and the observation geometry hindered our ability to constrain the timing, magnitude and location of reactivated slip from a source similar to the 2003 Secretary Island earthquake. Our findings indicate that slip was not triggered following either the 2007 George Sound earthquake or 2016 Kaikōura earthquake. However, we cannot rule out triggered slip near Secretary Island following the 2009 Dusky Sound earthquake. Any such slip likely occurred on an area of c. 350 km² (c. 15 km updip of the Secretary Island epicentre) with an average slip of 1–3 m, producing motion away from the satellite of c. 25 mm at Secretary Island.</p>


Sign in / Sign up

Export Citation Format

Share Document