scholarly journals New design and comparative study via two techniques for wind energy conversion system

Author(s):  
M. S. Mahgoun ◽  
A. E. Badoud

Introduction. With the advancements in the variable speed direct drive design and control of wind energy systems, the efficiency and energy capture of these systems is also increasing. As such, numerous linear controllers have also been developed, in literature, for MPPT which use the linear characteristics of the wind turbine system. The major limitation in all of those linear controllers is that they use the linearized model and they cannot deal with the nonlinear dynamics of a system. However, real systems exhibit nonlinear dynamics and a nonlinear controller is required to handle such nonlinearities in real-world systems. The novelty of the proposed work consists in the development of a robust nonlinear controller to ensure maximum power point tracking by handling nonlinearities of a system and making it robust against changing environmental conditions. Purpose. In the beginning, sliding mode control has been considered as one of the most powerful control techniques, this is due to the simplicity of its implementation and robustness compared to uncertainties of the system and external disturbances. Unfortunately, this type of controller suffers from a major disadvantage, that is, the phenomenon of chattering. Methods. So in this paper and in order to eliminate this phenomenon, a novel non-linear control algorithm based on a synergetic controller is proposed. The objective of this control is to maximize the power extraction of a variable speed wind energy conversion system compared to sliding mode control by eliminating the phenomenon of chattering and have a good power quality by fixing the power coefficient at its maximum value and the Tip Speed Ratio maintained at its optimum value. Results. The performance of the proposed nonlinear controllers has been validated in MATLAB/Simulink environment. The simulation results show the effectiveness of the proposed scheme, suppression of the chattering phenomenon and robustness of the proposed controller compared to the sliding mode control law.

2012 ◽  
Vol 463-464 ◽  
pp. 1616-1620
Author(s):  
Hu Zhang ◽  
Wu Wang

As for traditional sliding mode control (SMC) with linear sliding surface and the tracking error can’t convergent to zero in finite time, fast terminal sliding mode control (FTSMC) designed with introduction nonlinear function into sliding hyper-plane, which makes tracking error converge to zero in finite time. A global fast terminal sliding mode control (GFTSMC) was designed with SMC and FTSMC, the sliding surface of GFTSMC was designed and the control law was deduced, also the convergence time was computed and stability proved by Lyapunov theory. With simulation, the optimal sliding mode parameters was selected and applied this control strategy for wind energy conversion system (WECS), the simulation result shows this control system can realize optimal power tracking control for wind energy conversion system.


Sign in / Sign up

Export Citation Format

Share Document