terminal sliding mode control
Recently Published Documents


TOTAL DOCUMENTS

990
(FIVE YEARS 422)

H-INDEX

50
(FIVE YEARS 14)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Aydin Azizi ◽  
Hamed Mobki ◽  
Hassen M. Ouakad ◽  
Omid Reza B. Speily

This investigation attempts to study a possible controller in improving the dynamic stability of capacitive microstructures through mitigating the effects of disturbances and uncertainties in their resultant dynamic behavior. Consequently, a nonsingular terminal sliding mode control strategy is suggested in this regard. The main features of this particular control strategy are its high response speed and its non-reliance on powerful controller forces. The stability of the controller was investigated using Lyapunov theory. For this purpose, a suitable Lyapunov function was introduced to prove the stability of a controller, and the singularity conditions and methods to overcome these conditions are presented. The achieved results proved the high capability of the applied technique in stabilizing of the microstructure as well as mitigating the effects of disturbances and uncertainties.


Author(s):  
Anil Kumar Pal ◽  
Shyam Kamal ◽  
Xinghuo Yu ◽  
Shyam Krishna Nagar ◽  
Bijnan Bandyopadhyay

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Khalid A. Alattas ◽  
Javad Mostafaee ◽  
Abdullah K. Alanazi ◽  
Saleh Mobayen ◽  
Mai The Vu ◽  
...  

In this study, an adaptive nonsingular finite time control technique based on a barrier function terminal sliding mode controller is proposed for the robust stability of nth-order nonlinear dynamic systems with external disturbances. The barrier function adaptive terminal sliding mode control makes the convergence of tracking errors to a region near zero in the finite time. Moreover, the suggested method does not need the information of upper bounds of perturbations which are commonly applied to the sliding mode control procedure. The Lyapunov stability analysis proves that the errors converge to the determined region. Last of all, simulations and experimental results on a complex new chaotic system with a high Kaplan–Yorke dimension are provided to confirm the efficacy of the planned method. The results demonstrate that the suggested controller has a stronger tracking than the adaptive controller and the results are satisfactory with the application of the controller based on chaotic synchronization on the chaotic system.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 332
Author(s):  
Van-Cuong Nguyen ◽  
Phu-Nguyen Le ◽  
Hee-Jun Kang

In this study, a fault-tolerant control (FTC) tactic using a sliding mode controller–observer method for uncertain and faulty robotic manipulators is proposed. First, a finite-time disturbance observer (DO) is proposed based on the sliding mode observer to approximate the lumped uncertainties and faults (LUaF). The observer offers high precision, quick convergence, low chattering, and finite-time convergence estimating information. Then, the estimated signal is employed to construct an adaptive non-singular fast terminal sliding mode control law, in which an adaptive law is employed to approximate the switching gain. This estimation helps the controller automatically adapt to the LUaF. Consequently, the combination of the proposed controller–observer approach delivers better qualities such as increased position tracking accuracy, reducing chattering effect, providing finite-time convergence, and robustness against the effect of the LUaF. The Lyapunov theory is employed to illustrate the robotic system’s stability and finite-time convergence. Finally, simulations using a 2-DOF serial robotic manipulator verify the efficacy of the proposed method.


Author(s):  
Moussa Labbadi ◽  
Mohamed Djemai ◽  
Sahbi Boubaker

In this article, a new dynamic non-singular terminal sliding mode control technique for a quadrotor system subjected to external disturbances is evaluated. The offered control approach is based on non-singular terminal sliding mode controller combined with proportional–integral–derivative sliding surface to improve the performance. The proposed controller is formulated using the Lyapunov theory which ensured the existence of the sliding mode surfaces in finite time. Furthermore, the chattering problem, caused by the switching position and attitude laws, has been reduced using the proposed controller. Moreover, a high-precision performance trajectory tracking can be obtained. The problem of the disturbances is addressed using the suggested controller. Simulation results show the feasibility and efficiency of the non-singular terminal sliding mode control-proportional–integral–derivative proposed approach.


Author(s):  
H L Chen ◽  
H X Ren ◽  
B C Yang ◽  
J T Chen

This brief is devoted to the predesigned motion trajectory-based finite time dynamic positioning (DP) control for a marine surface vehicle (MSV) with unknown external disturbances. Firstly, a preset motion trajectory is presented through establishing the relationship function among position tracking errors and heading tracking error, facilitating the MSV to arrive in the equilibrium point along the pre-designed trajectory. Furthermore, a novel nonsingular and fast terminal sliding mode control (NTSMC) approach is investigated, which ensures faster convergence rate and better stability performance of the close-loop system than the conventional backstepping control approach. What’s more, by incorporating the adaptive technique with the NTSMC approach, an adaptive nonsingular and fast terminal sliding mode control (ANTSMC) strategy is addressed. Compared to the NTSMC approach, it strengthens robustness to disturbances and guarantees system states to converge to a closer neighborhood of the equilibrium point. Finally, simulation results illustrate the remarkable effectiveness of proposed control schemes.


2021 ◽  
Vol 13 (23) ◽  
pp. 13427
Author(s):  
Muhammad Maaruf ◽  
Md Shafiullah ◽  
Ali T. Al-Awami ◽  
Fahad S. Al-Ismail

This paper investigates maximum power extraction from a wind-energy-conversion system (WECS) with a permanent magnet synchronous generator (PMSG) operating in standalone mode. This was achieved by designing a robust adaptive nonsingular fast terminal sliding mode control (ANFTSMC) for the WECS-PMSG. The proposed scheme guaranteed optimal power generation and suppressed the system uncertainties with a rapid convergence rate. Moreover, it is independent of the upper bounds of the system uncertainties as an online adjustment algorithm was utilized to estimate and compensate them. Finally, four case studies were carried out, which manifested the remarkable performance of ANFTSMC in comparison to previous methods reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document