scholarly journals Minimally invasive segmentectomy for early stage lung cancer gains momentum

2019 ◽  
Vol 7 (3) ◽  
pp. 62-62
Author(s):  
Syed S. Razi ◽  
Dao Nguyen ◽  
Nestor Villamizar
2016 ◽  
Vol 1 ◽  
pp. 18-18
Author(s):  
Benoît Bédat ◽  
Wolfram Karenovics ◽  
Samira Mercedes Sadowski ◽  
Frédéric Triponez

Author(s):  
Güntuğ Batihan ◽  
Kenan Can Ceylan

Lobectomy plus regional lymph node dissection remains the gold standard treatment method in early-stage lung cancer. However, with the demonstration of the safety and efficacy of minimally invasive approaches, the expression of surgery in this statement, replaced by thoracoscopic anatomical lung resection. Clinical studies have demonstrated the superiority of VATS in terms of postoperative pain, drainage time, length of hospital stay, and complications, moreover, long-term oncologic results are similar or better than thoracotomy. Therefore, VATS lobectomy is the preferred surgical method in early-stage lung cancer. Different surgical techniques are available in VATS and can be modified according to the surgeon’s personal experience. Uniport can be applied as well as two or three port incisions. In this book section, I plan to focus on VATS lobectomy, technique-related tricks, complication management, and long-term oncologic results in early and locally advanced lung cancer.


2021 ◽  
Vol 16 (3) ◽  
pp. S264-S265
Author(s):  
F. Xu ◽  
L. Yang ◽  
C. Liu ◽  
J. Ying ◽  
Y. Wang

Author(s):  
Guangyao Wu ◽  
Arthur Jochems ◽  
Turkey Refaee ◽  
Abdalla Ibrahim ◽  
Chenggong Yan ◽  
...  

Abstract Introduction Lung cancer ranks second in new cancer cases and first in cancer-related deaths worldwide. Precision medicine is working on altering treatment approaches and improving outcomes in this patient population. Radiological images are a powerful non-invasive tool in the screening and diagnosis of early-stage lung cancer, treatment strategy support, prognosis assessment, and follow-up for advanced-stage lung cancer. Recently, radiological features have evolved from solely semantic to include (handcrafted and deep) radiomic features. Radiomics entails the extraction and analysis of quantitative features from medical images using mathematical and machine learning methods to explore possible ties with biology and clinical outcomes. Methods Here, we outline the latest applications of both structural and functional radiomics in detection, diagnosis, and prediction of pathology, gene mutation, treatment strategy, follow-up, treatment response evaluation, and prognosis in the field of lung cancer. Conclusion The major drawbacks of radiomics are the lack of large datasets with high-quality data, standardization of methodology, the black-box nature of deep learning, and reproducibility. The prerequisite for the clinical implementation of radiomics is that these limitations are addressed. Future directions include a safer and more efficient model-training mode, merge multi-modality images, and combined multi-discipline or multi-omics to form “Medomics.”


Sign in / Sign up

Export Citation Format

Share Document