scholarly journals Cohesive Sediment Field Study : James River, Virginia

2021 ◽  
Author(s):  
S. Jarrell Smith ◽  
David W. Perkey ◽  
Kelsey A. Fall

Estuaries trap much of the fine sediment delivered to them by rivers. This phenomenon presents challenges to the US Army Corps of Engineers (USACE) navigation mission, which maintains navigable waterways for waterborne commerce through estuarine regions. The USACE Regional Sediment Management Program and the USACE Norfolk District are conducting a regional sediment transport modeling study to identify cost-effective sediment management schemes in the James River, a tributary estuary of Chesapeake Bay. A key element of the sediment transport modeling study is the definition of cohesive sediment transport processes, such as erosion and settling velocity. This report describes field-based measurements of cohesive sediment erosion and settling velocity conducted in November 2017. The team conducted erosion testing on 15 cores collected throughout the tidal system. Additionally, two anchor stations were occupied to measure tidal variations in vertical distributions of suspended sediment concentration, particle size, and settling velocity. Recommended cohesive sediment transport parameters were developed from the field measurements.

2017 ◽  
Vol 34 (7) ◽  
pp. 1469-1482 ◽  
Author(s):  
Daosheng Wang ◽  
Jicai Zhang ◽  
Ya Ping Wang ◽  
Xianqing Lv ◽  
Yang Yang ◽  
...  

AbstractThe model parameters in the suspended cohesive sediment transport model are quite important for the accurate simulation of suspended sediment concentrations (SSCs). Based on a three-dimensional cohesive sediment transport model and its adjoint model, the in situ observed SSCs at four stations are assimilated to simulate the SSCs and to estimate the parameters in Hangzhou Bay in China. Numerical experimental results show that the adjoint method can efficiently improve the simulation results, which can benefit the prediction of SSCs. The time series of the modeled SSCs present a clear semidiurnal variation, in which the maximal SSCs occur during the flood tide and near the high water level due to the large current speeds. Sensitivity experiments prove that the estimated results of the settling velocity and resuspension rate, especially the temporal variations, are robust to the model settings. The temporal variations of the estimated settling velocity are negatively correlated with the tidal elevation. The main reason is that the mean size of the suspended sediments can be reduced during the flood tide, which consequently decreases the settling velocity according to Stokes’s law, and it is opposite in the ebb tide. The temporal variations of the estimated resuspension rate and the current speeds have a significantly positive correlation, which accords with the dynamics of the resuspension rate. The temporal variations of the settling velocity and resuspension rate are reasonable from the viewpoint of physics, indicating the adjoint method can be an effective tool for estimating the parameters in the sediment transport models.


1984 ◽  
Vol 1 (19) ◽  
pp. 199
Author(s):  
E.J. Hayter ◽  
A.J. Mehta

Cohesive sediment related problems in estuaries include shoaling in navigable waterways and water pollution. A two-dimensional, depth averaged, finite element cohesive sediment transport model, CSTM-H, has been developed and may be used to assist in predicting the fate of sorbed pollutants and the frequency and quantity of dredging required to maintain navigable depths. Algorithms which describe the transport processes of redispersion, resuspenslon, dispersive transport, settling, deposition, bed formation and bed consolidation are incorporated in CSTM-H. The Galerkin weighted residual method is used to solve the advection-dispersion equation with appropriate source/sink terms at each time step for the nodal suspended sediment concentrations. The model yields stable and converging solutions. Verification was carried out against a series of erosion-deposition experiments in the laboratory using kaolinite and a natural mud as sediment. A model application under prototype conditions is described.


2017 ◽  
Vol 8 (2) ◽  
pp. 671-687
Author(s):  
Yunita A. Noya ◽  
Mulia Purba ◽  
Alan F. Koropitan ◽  
Tri Prartono

The presence of cohesive sediment in the water column can reduce light penetration and affect photosynthesis process, and it can be disrupted the primary productivity of aquatic, and sedimentation of coastal waters. The objective of this research was to determine the cohesive sediment distribution pattern and the relationship with sedimentation. MIKE 3 FM modeling was used to understand the process of sediment transport and sedimentation on Inner Ambon Bay. Sediment transport modeling method was divided into two stages: the hydrodynamic modeling (baroclinic) and sediment transport (mud transport) modeling. The model results indicate current patterns in the Inner Ambon Bay is influenced by the tidal factor. Suspended sediment dispersed vertically from the surface to a depth of 30 m with concentration of about 3.5-15 Kg/m3. The maximum consentration of the suspended sediment occurs at head of the bay (around Waiheru, Passo, and Lateri). Model simulations for 30 days showed the rate of erosion is about 1.04-6.15 Kg/m2/s, while in Inner Ambon Bay the erosion about 9.07x10-8Kg/m2/s only occurred in T1 station. Sedimentation associated with the cohesive sediment accumulation and it was shown by bed level. In addition, the simulation showed bed level in sill ranged at 0.01-0.19 cm and 0.47 mm/day on average, while in the Inner Ambon Bay it ranged from 1.75-10.01 cm, and the sedimentation rate was approximately 39.9 mm/day.


Sign in / Sign up

Export Citation Format

Share Document