scholarly journals Structure of complex tori with the automorphisms of maximal degree

1980 ◽  
Vol 4 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Hisao Yoshihara
Keyword(s):  
2017 ◽  
Vol 21 (4) ◽  
pp. 2419-2460 ◽  
Author(s):  
Giuseppe Pareschi ◽  
Mihnea Popa ◽  
Christian Schnell

2015 ◽  
Vol 07 (02) ◽  
pp. 293-307
Author(s):  
Indranil Biswas

Let G be a connected reductive complex affine algebraic group and K ⊂ G a maximal compact subgroup. Let M be a compact complex torus equipped with a flat Kähler structure and (EG, θ) a polystable Higgs G-bundle on M. Take any C∞ reduction of structure group EK ⊂ EG to the subgroup K that solves the Yang–Mills equation for (EG, θ). We prove that the principal G-bundle EG is polystable and the above reduction EK solves the Einstein–Hermitian equation for EG. We also prove that for a semistable (respectively, polystable) Higgs G-bundle (EG, θ) on a compact connected Calabi–Yau manifold, the underlying principal G-bundle EG is semistable (respectively, polystable).


2016 ◽  
Vol 27 (07) ◽  
pp. 1640002 ◽  
Author(s):  
Insong Choe ◽  
George H. Hitching

Let [Formula: see text] be the Grassmann bundle of two-planes associated to a general bundle [Formula: see text] over a curve [Formula: see text]. We prove that an embedding of [Formula: see text] by a certain twist of the relative Plücker map is not secant defective. This yields a new and more geometric proof of the Hirschowitz-type bound on the isotropic Segre invariant for maximal isotropic sub-bundles of orthogonal bundles over [Formula: see text], analogous to those given for vector bundles and symplectic bundles in [I. Choe and G. H. Hitching, Secant varieties and Hirschowitz bound on vector bundles over a curve, Manuscripta Math. 133 (2010) 465–477, I. Choe and G. H. Hitching, Lagrangian sub-bundles of symplectic vector bundles over a curve, Math. Proc. Cambridge Phil. Soc. 153 (2012) 193–214]. From the non-defectivity, we also deduce an interesting feature of a general orthogonal bundle of even rank over [Formula: see text], contrasting with the classical and symplectic cases: a general maximal isotropic sub-bundle of maximal degree intersects at least one other such sub-bundle in positive rank.


1982 ◽  
Vol 25 (3) ◽  
pp. 337-356 ◽  
Author(s):  
N.J. Pullman ◽  
H. Shank ◽  
W.D. Wallis

A maximal-clique partition of a graph G is a way of covering G with maximal complete subgraphs, such that every edge belongs to exactly one of the subgraphs. If G has a maximal-clique partition, the maximal-clique partition number of G is the smallest cardinality of such partitions. In this paper the existence of maximal-clique partitions is discussed – for example, we explicitly describe all graphs with maximal degree at most four which have maximal-clique partitions - and discuss the maximal-clique partition number and its relationship to other clique covering and partition numbers. The number of different maximal-clique partitions of a given graph is also discussed. Several open problems are presented.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 996
Author(s):  
Qingshan Xu ◽  
Xiaoqing Tan ◽  
Rui Huang

Recent advances in theoretical and experimental quantum computing raise the problem of verifying the outcome of these quantum computations. The recent verification protocols using blind quantum computing are fruitful for addressing this problem. Unfortunately, all known schemes have relatively high overhead. Here we present a novel construction for the resource state of verifiable blind quantum computation. This approach achieves a better verifiability of 0.866 in the case of classical output. In addition, the number of required qubits is 2N+4cN, where N and c are the number of vertices and the maximal degree in the original computation graph, respectively. In other words, our overhead is less linear in the size of the computational scale. Finally, we utilize the method of repetition and fault-tolerant code to optimise the verifiability.


Sign in / Sign up

Export Citation Format

Share Document