Barren Meandering Streams in the Modern Toiyabe Basin of Nevada, U.S.A., and Their Relevance To the Study of the Pre-vegetation Rock Record

2019 ◽  
Vol 89 (5) ◽  
Author(s):  
Alessandro Ielpi ◽  
Mathieu G.A. Lapôtre
2020 ◽  
Author(s):  
Natalie H. Raia ◽  
◽  
Donna L. Whitney ◽  
Christian Teyssier
Keyword(s):  

GSA Today ◽  
2014 ◽  
pp. 4-8 ◽  
Author(s):  
Patricia L. Corcoran ◽  
Charles J. Moore ◽  
Kelly Jazvac

2021 ◽  
pp. 1-13
Author(s):  
M. Ryan King ◽  
Andrew D. La Croix ◽  
Terry A. Gates ◽  
Paul B. Anderson ◽  
Lindsay E. Zanno

Abstract A new ichnospecies, Glossifungites gingrasi n. isp., is described from multiple locations in basal sand-filled coastal plain distributary channels of the Turonian (Upper Cretaceous) Ferron Sandstone (central Utah). Glossifungites gingrasi n. isp. is attributed to the ichnogenus Glossifungites based on the presence of scratch imprints, passive fill, and a tongue-shaped structure, yet the new ichnospecies is distinct because it displays transverse bioglyphs that run perpendicular to the planiform structure, which contrasts to the axis parallel bioglyphs present in the ichnospecies G. saxicava. The transverse arrangement of ornamentation exhibited by G. gingrasi n. isp. is observed in modern subaqueous insect burrows produced by mayfly and chironomid larvae, and constitutes a way to differentiate insect-generated burrows from structures produced by crustaceans that are known to create other Glossifungites ichnospecies. Differentiating insect- from crustacean-generated burrows is significant because it provides a way to distinguish bioturbation by marine-recruited fauna from that produced by freshwater fauna in the rock record, making G. gingrasi n. isp. a valuable ichnological tool for paleoenvironmental and stratigraphic interpretation. While G. gingrasi n. isp. may represent a burrow created by a variety of filter-feeding subaqueous insects, the large size of G. gingrasi n. isp. in the Ferron Sandstone suggests that the largest specimens are probable mayfly burrows and supports the assertion that burrowing mayflies (e.g., Polymitarcyidae and Ephemeridae) adapted to domicile filter-feeding during or prior to the Turonian. UUID: http://zoobank.org/a033b22f-bf09-481a-975e-3a1b096154cc


2004 ◽  
Vol 228 (1) ◽  
pp. 29-62 ◽  
Author(s):  
S. George Pemberton ◽  
James A. MacEachern ◽  
Tom Saunders
Keyword(s):  

2021 ◽  
Author(s):  
Mohammed S. Hashim ◽  
Stephen E. Kaczmarek

Abstract Numerous Phanerozoic limestones are characterized by diagenetic calcite microcrystals formed during mineralogical stabilization of metastable carbonate sediments in various diagenetic environments. Laboratory experiments show that calcite precipitating under conditions similar to those that characterize meteoric settings (impurity-free, low supersaturation, high fluid:solid ratio) exhibits the rhombic form, whereas calcite precipitating under conditions similar to those that prevail in marine burial settings (impurity-rich, high supersaturation, low fluid:solid ratio) exhibits non-rhombic forms. This prediction is tested here using new and previously published textural and geochemical data from the rock record. These data show that the vast majority of Phanerozoic limestones characterized by rhombic microcrystals also exhibit petrographic and/or geochemical evidence (depleted 𝛿13C, 𝛿18O, and trace elements) indicative of meteoric diagenesis. In contrast, non-rhombic forms are associated with marine burial conditions, suggesting that rhombic calcite microcrystals may provide a valuable textural proxy for meteoric diagenesis in Phanerozoic limestones.


Geology ◽  
2021 ◽  
Author(s):  
C.P. Galeazzi ◽  
R.P. Almeida ◽  
A.H. do Prado

Alluvial rivers are the most important agents of sediment transport in continental basins, whose fluvial deposits enclose information related to the time when rivers were active. In order to extract the most information from fluvial deposits in the sedimentary record, it is imperative to quantify the natural variability of channel patterns at the global scale, explore what controls may influence their development, and investigate whether channel pattern information is preserved in the alluvial plains in order to develop tools for recognizing them in the sedimentary record. By surveying 361 reaches of modern alluvial rivers with available water discharge data at a global scale, we present a quantitative channel pattern classification based on sinuosity and channel count index applicable to the recognition in the rock record. A continuum of channel patterns ranging from high-sinuosity single channel to lowsinuosity multichannels is documented, along with the proportion of depositional elements in their alluvial plains and their conditions of occurrence. Preserved barforms in the alluvial plains of these rivers are used to infer and quantify paleoflow directions at the channel-belt scale and result in ranges of paleocurrent circular variance that may lead to channel pattern identification in the rock record. Data from this work indicate that the recognition of channel patterns may be used to predict paleogeographic features such as the scale of drainage basin area and discharge, slope, and annual discharge regimes.


2019 ◽  
Vol 47 (1) ◽  
pp. 91-118 ◽  
Author(s):  
Scott M. McLennan ◽  
John P. Grotzinger ◽  
Joel A. Hurowitz ◽  
Nicholas J. Tosca

Two decades of intensive research have demonstrated that early Mars ([Formula: see text]2 Gyr) had an active sedimentary cycle, including well-preserved stratigraphic records, understandable within a source-to-sink framework with remarkable fidelity. This early cycle exhibits first-order similarities to (e.g., facies relationships, groundwater diagenesis, recycling) and first-order differences from (e.g., greater aeolian versus subaqueous processes, basaltic versus granitic provenance, absence of plate tectonics) Earth's record. Mars’ sedimentary record preserves evidence for progressive desiccation and oxidation of the surface over time, but simple models for the nature and evolution of paleoenvironments (e.g., acid Mars, early warm and wet versus late cold and dry) have given way to the view that, similar to Earth, different climate regimes on Mars coexisted on regional scales and evolved on variable timescales, and redox chemistry played a pivotal role. A major accomplishment of Mars exploration has been to demonstrate that surface and subsurface sedimentary environments were both habitable and capable of preserving any biological record. ▪ Mars has an ancient sedimentary rock record with many similarities to but also many differences from Earth's sedimentary rock record. ▪ Mars’ ancient sedimentary cycle shows a general evolution toward more desiccated and oxidized surficial conditions. ▪ Climatic regimes of early Mars were relatively clement but with regional variations leading to different sedimentary mineral assemblages. ▪ Surface and subsurface sedimentary environments on early Mars were habitable and capable of preserving any biological record that may have existed.


Sign in / Sign up

Export Citation Format

Share Document