scholarly journals Some Results on Pure Submodules Relative to Submodule

2015 ◽  
Vol 12 (4) ◽  
pp. 833-837
Author(s):  
Baghdad Science Journal

Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.

2017 ◽  
Vol 30 (3) ◽  
pp. 227
Author(s):  
Rana Noori Majeed Mohammed

  Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called  s- closed submodule denoted by  D ≤sc W, if D has   no  proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In  this  paper,  we study  modules which satisfies  the ascending chain  conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.


2013 ◽  
Vol 10 (4) ◽  
pp. 1269-1272
Author(s):  
Baghdad Science Journal

Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be approximately pure submodule of an R-module, if for each ideal I of R. The main purpose of this paper is to study the properties of the following concepts: approximately pure essentialsubmodules, approximately pure closedsubmodules and relative approximately pure complement submodules. We prove that: when an R-module M is an approximately purely extending modules and N be Ap-puresubmodulein M, if M has the Ap-pure intersection property then N is Ap purely extending.


2018 ◽  
Vol 31 (2) ◽  
pp. 164
Author(s):  
Haibat K. Mohammad Ali ◽  
Mohammad E. Dahsh

    Let R be a commutative ring with identity, and M be a left untial module. In this paper we introduce and study the concept w-closed submodules, that is stronger form of the concept of closed submodules, where asubmodule K of a module M is called w-closed in M, "if it has no proper weak essential extension in M", that is if there exists a submodule L of M with K is weak essential submodule of L then K=L. Some basic properties, examples of w-closed submodules are investigated, and some relationships between w-closed submodules and other related modules are studied. Furthermore, modules with chain condition on w-closed submodules are studied.   


Author(s):  
Yilmaz Durğun

An [Formula: see text]-module [Formula: see text] is called closed (neat) projective if, for every closed (neat) submodule [Formula: see text] of every [Formula: see text]-module [Formula: see text], every homomorphism from [Formula: see text] to [Formula: see text] lifts to [Formula: see text]. In this paper, we study closed (neat) projective modules. In particular, the structure of a ring over which every finitely generated (cyclic, injective) right [Formula: see text]-module is closed (neat) projective is studied. Furthermore, the relationship among the proper classes which are induced by closed submodules, neat submodules, pure submodules and [Formula: see text]-pure submodules are investigated.


2011 ◽  
Vol 8 (1) ◽  
pp. 183-187
Author(s):  
Baghdad Science Journal

Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.


2019 ◽  
Vol 56 (2) ◽  
pp. 252-259
Author(s):  
Ebrahim Hashemi ◽  
Fatemeh Shokuhifar ◽  
Abdollah Alhevaz

Abstract The intersection of all maximal right ideals of a near-ring N is called the quasi-radical of N. In this paper, first we show that the quasi-radical of the zero-symmetric near-ring of polynomials R0[x] equals to the set of all nilpotent elements of R0[x], when R is a commutative ring with Nil (R)2 = 0. Then we show that the quasi-radical of R0[x] is a subset of the intersection of all maximal left ideals of R0[x]. Also, we give an example to show that for some commutative ring R the quasi-radical of R0[x] coincides with the intersection of all maximal left ideals of R0[x]. Moreover, we prove that the quasi-radical of R0[x] is the greatest quasi-regular (right) ideal of it.


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950079
Author(s):  
Ahmad Al Khalaf ◽  
Iman Taha ◽  
Orest D. Artemovych ◽  
Abdullah Aljouiiee

Earlier D. A. Jordan, C. R. Jordan and D. S. Passman have investigated the properties of Lie rings Der [Formula: see text] of derivations in a commutative differentially prime rings [Formula: see text]. We study Lie rings Der [Formula: see text] in the non-commutative case and prove that if [Formula: see text] is a [Formula: see text]-torsion-free [Formula: see text]-semiprime ring, then [Formula: see text] is a semiprime Lie ring or [Formula: see text] is a commutative ring.


Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.


2020 ◽  
Vol 53 (1) ◽  
pp. 325-331
Author(s):  
Malik Bataineh ◽  
Rashid Abu-Dawwas ◽  
Jenan Shtayat

AbstractLet G be a group with identity e, R be a G-graded commutative ring with a nonzero unity 1 and M be a G-graded R-module. In this article, we introduce and study the concept of almost graded multiplication modules as a generalization of graded multiplication modules; a graded R-module M is said to be almost graded multiplication if whenever a\in h(R) satisfies {\text{Ann}}_{R}(aM)={\text{Ann}}_{R}(M), then (0{:}_{M}a)=\{0\}. Also, we introduce and study the concept of almost graded comultiplication modules as a generalization of graded comultiplication modules; a graded R-module M is said to be almost graded comultiplication if whenever a\in h(R) satisfies {\text{Ann}}_{R}(aM)={\text{Ann}}_{R}(M), then aM=M. We investigate several properties of these classes of graded modules.


Sign in / Sign up

Export Citation Format

Share Document