scholarly journals Remarks on Generalized Derivations in Prime and Semiprime Rings

Author(s):  
Basudeb Dhara

LetRbe a ring with centerZandIa nonzero ideal ofR. An additive mappingF:R→Ris called a generalized derivation ofRif there exists a derivationd:R→Rsuch thatF(xy)=F(x)y+xd(y)for allx,y∈R. In the present paper, we prove that ifF([x,y])=±[x,y]for allx,y∈IorF(x∘y)=±(x∘y)for allx,y∈I, then the semiprime ringRmust contains a nonzero central ideal, providedd(I)≠0. In caseRis prime ring,Rmust be commutative, providedd≠0. The cases (i)F([x,y])±[x,y]∈Zand (ii)F(x∘y)±(x∘y)∈Zfor allx,y∈Iare also studied.

ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Basudeb Dhara ◽  
Atanu Pattanayak

Let be a semiprime ring, a nonzero ideal of , and , two epimorphisms of . An additive mapping is generalized -derivation on if there exists a -derivation such that holds for all . In this paper, it is shown that if , then contains a nonzero central ideal of , if one of the following holds: (i) ; (ii) ; (iii) ; (iv) ; (v) for all .


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


2015 ◽  
Vol 34 (2) ◽  
pp. 29
Author(s):  
Shuliang Huang ◽  
Nadeem Ur Rehman

Let $R$ be a prime ring, $I$ a nonzero ideal of $R$ and $m, n$  fixed positive integers.  If $R$ admits a generalized derivation $F$ associated with a  nonzero derivation $d$ such that $(F([x,y])^{m}=[x,y]_{n}$ for  all $x,y\in I$, then $R$ is commutative. Moreover  we also examine the case when $R$ is a semiprime ring.


2006 ◽  
Vol 13 (03) ◽  
pp. 371-380 ◽  
Author(s):  
Nurcan Argaç

Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.


2010 ◽  
Vol 7 (4) ◽  
pp. 1426-1431
Author(s):  
Baghdad Science Journal

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .


Author(s):  
Deepak Kumar ◽  
Bharat Bhushan ◽  
Gurninder S. Sandhu

Let [Formula: see text] be a prime ring with involution ∗ of the second kind. An additive mapping [Formula: see text] is called generalized derivation if there exists a unique derivation [Formula: see text] such that [Formula: see text] for all [Formula: see text] In this paper, we investigate the structure of [Formula: see text] and describe the possible forms of generalized derivations of [Formula: see text] that satisfy specific ∗-differential identities. Precisely, we study the following situations: (i) [Formula: see text] (ii) [Formula: see text] (iii) [Formula: see text] (iv) [Formula: see text] for all [Formula: see text] Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.


2021 ◽  
Vol 39 (4) ◽  
pp. 131-141
Author(s):  
Basudeb Dhara ◽  
Venus Rahmani ◽  
Shervin Sahebi

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one ofthe following holds:(1) R is commutative;(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.


Author(s):  
Rita Prestigiacomo

Let [Formula: see text] be a prime ring with [Formula: see text], [Formula: see text] a non-central Lie ideal of [Formula: see text], [Formula: see text] its Martindale quotient ring and [Formula: see text] its extended centroid. Let [Formula: see text] and [Formula: see text] be nonzero generalized derivations on [Formula: see text] such that [Formula: see text] Then there exists [Formula: see text] such that [Formula: see text] and [Formula: see text], for any [Formula: see text], unless [Formula: see text], where [Formula: see text] is the algebraic closure of [Formula: see text].


2012 ◽  
Vol 11 (06) ◽  
pp. 1250111 ◽  
Author(s):  
BASUDEB DHARA ◽  
SHAKIR ALI

Let R be a ring with center Z(R) and n be a fixed positive integer. A mapping f : R → R is said to be n-centralizing on a subset S of R if f(x)xn – xn f(x) ∈ Z(R) holds for all x ∈ S. The main result of this paper states that every n-centralizing generalized derivation F on a (n + 1)!-torsion free semiprime ring is n-commuting. Further, we prove that if a generalized derivation F : R → R is n-centralizing on a nonzero left ideal λ, then either R contains a nonzero central ideal or λD(Z) ⊆ Z(R) for some derivation D of R. As an application, n-centralizing generalized derivations of C*-algebras are characterized.


ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Basudeb Dhara ◽  
Atanu Pattanayak

Let R be an associative ring, λ a nonzero left ideal of R, d:R→R a derivation and G:R→R a generalized derivation. In this paper, we study the following situations in prime and semiprime rings: (1) G(x∘y)=a(xy±yx); (2) G[x,y]=a(xy±yx); (3) d(x)∘d(y)=a(xy±yx); for all x,y∈λ and a∈{0,1,-1}.


Sign in / Sign up

Export Citation Format

Share Document