scholarly journals History Matching and Production Forecast Uncertainty by Means of the Ensemble Kalman Filter: A Real Field Application

Author(s):  
Alberto Bianco ◽  
Alberto Cominelli ◽  
Laura Dovera ◽  
Geir Naevdal ◽  
Brice Valles
SPE Journal ◽  
2010 ◽  
Vol 16 (02) ◽  
pp. 307-317 ◽  
Author(s):  
Yanfen Zhang ◽  
Dean S. Oliver

Summary The increased use of optimization in reservoir management has placed greater demands on the application of history matching to produce models that not only reproduce the historical production behavior but also preserve geological realism and quantify forecast uncertainty. Geological complexity and limited access to the subsurface typically result in a large uncertainty in reservoir properties and forecasts. However, there is a systematic tendency to underestimate such uncertainty, especially when rock properties are modeled using Gaussian random fields. In this paper, we address one important source of uncertainty: the uncertainty in regional trends by introducing stochastic trend coefficients. The multiscale parameters including trend coefficients and heterogeneities can be estimated using the ensemble Kalman filter (EnKF) for history matching. Multiscale heterogeneities are often important, especially in deepwater reservoirs, but are generally poorly represented in history matching. In this paper, we describe a method for representing and updating multiple scales of heterogeneity in the EnKF. We tested our method for updating these variables using production data from a deepwater field whose reservoir model has more than 200,000 unknown parameters. The match of reservoir simulator forecasts to real field data using a standard application of EnKF had not been entirely satisfactory because it was difficult to match the water cut of a main producer in the reservoir. None of the realizations of the reservoir exhibited water breakthrough using the standard parameterization method. By adding uncertainty in large-scale trends of reservoir properties, the ability to match the water cut and other production data was improved substantially. The results indicate that an improvement in the generation of the initial ensemble and in the variables describing the property fields gives an improved history match with plausible geology. The multiscale parameterization of property fields reduces the tendency to underestimate uncertainty while still providing reservoir models that match data.


2021 ◽  
Author(s):  
Boxiao Li ◽  
Hemant Phale ◽  
Yanfen Zhang ◽  
Timothy Tokar ◽  
Xian-Huan Wen

Abstract Design of Experiments (DoE) is one of the most commonly employed techniques in the petroleum industry for Assisted History Matching (AHM) and uncertainty analysis of reservoir production forecasts. Although conceptually straightforward, DoE is often misused by practitioners because many of its statistical and modeling principles are not carefully followed. Our earlier paper (Li et al. 2019) detailed the best practices in DoE-based AHM for brownfields. However, to our best knowledge, there is a lack of studies that summarize the common caveats and pitfalls in DoE-based production forecast uncertainty analysis for greenfields and history-matched brownfields. Our objective here is to summarize these caveats and pitfalls to help practitioners apply the correct principles for DoE-based production forecast uncertainty analysis. Over 60 common pitfalls in all stages of a DoE workflow are summarized. Special attention is paid to the following critical project transitions: (1) the transition from static earth modeling to dynamic reservoir simulation; (2) from AHM to production forecast; and (3) from analyzing subsurface uncertainties to analyzing field-development alternatives. Most pitfalls can be avoided by consistently following the statistical and modeling principles. Some pitfalls, however, can trap experienced engineers. For example, mistakes made in handling the three abovementioned transitions can yield strongly unreliable proxy and sensitivity analysis. For the representative examples we study, they can lead to having a proxy R2 of less than 0.2 versus larger than 0.9 if done correctly. Two improved experimental designs are created to resolve this challenge. Besides the technical pitfalls that are avoidable via robust statistical workflows, we also highlight the often more severe non-technical pitfalls that cannot be evaluated by measures like R2. Thoughts are shared on how they can be avoided, especially during project framing and the three critical transition scenarios.


2006 ◽  
Author(s):  
Vibeke Eilen Jensen Haugen ◽  
Lars-Jorgen Natvik ◽  
Geir Evensen ◽  
Aina Margrethe Berg ◽  
Kristin Margrethe Flornes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document