Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic and Natural Fractures in Conventional and Unconventional Unfractured and Naturally Fractured Reservoirs

Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov ◽  
Tony Fitzpatrick ◽  
Kirsty Morton
2014 ◽  
Vol 17 (01) ◽  
pp. 82-97 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features of many well-known reservoirs. Naturally fractured reservoirs contain fractures in igneous, metamorphic, and sedimentary formations. Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to many fractures with varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (i.e., not a connected-network fracture system). New semianalytical solutions are used to understand the pressure behavior of naturally fractured reservoirs containing a network of discrete and/or connected (continuous) finite- and infinite-conductivity fractures. We present an extensive literature review of the pressure-transient behavior of fractured reservoirs. First, we show that the Warren and Root (1963) dual-porosity model is a fictitious homogeneous porous medium because it does not contain any fractures. Second, by use of the new solutions, we show that for most naturally fractured reservoirs, the Warren and Root (1963) dual-porosity model is inappropriate and fundamentally incomplete for the interpretation of pressure-transient well tests because it does not capture the behavior of these reservoirs. We examined many field well tests published in the literature. With few exceptions, none of them shows the behavior of the Warren and Root (1963) dual-porosity model. These examples exhibit very diverse pressure behaviors of discretely and continuously fractured reservoirs. Unlike the single derivative shape of the Warren and Root (1963) model, the derivatives of these examples exhibit many different flow regimes depending on fracture distribution and on their intensity and conductivity. We show these flow regimes with our new model for discretely and continuously fractured reservoirs. Most well tests published in the literature do not exhibit the Warren and Root (1963) dual-porosity reservoir-model behavior. If we interpret them by use of this dual-porosity model, then the estimated permeability, skin factor, interporosity flow coefficient (λ), and storativity ratio (ω) will not represent the actual reservoir parameters.


2019 ◽  
Vol 3 (2) ◽  
pp. 23 ◽  
Author(s):  
Posadas-Mondragón ◽  
Camacho-Velázquez

In the oil industry, many reservoirs produce from partially penetrated wells, either to postpone the arrival of undesirable fluids or to avoid problems during drilling operations. The majority of these reservoirs are heterogeneous and anisotropic, such as naturally fractured reservoirs. The analysis of pressure-transient tests is a very useful method to dynamically characterize both the heterogeneity and anisotropy existing in the reservoir. In this paper, a new analytical solution for a partially penetrated well based on a fractal approach to capture the distribution and connectivity of the fracture network is presented. This solution represents the complexity of the flow lines better than the traditional Euclidean flow models for single-porosity fractured reservoirs, i.e., for a tight matrix. The proposed solution takes into consideration the variations in fracture density throughout the reservoir, which have a direct influence on the porosity, permeability, and the size distribution of the matrix blocks as a result of the fracturing process. This solution generalizes previous solutions to model the pressure-transient behavior of partially penetrated wells as proposed in the technical literature for the classical Euclidean formulation, which considers a uniform distribution of fractures that are fully connected. Several synthetic cases obtained with the proposed solution are shown to illustrate the influence of different variables, including fractal parameters.


Sign in / Sign up

Export Citation Format

Share Document