naturally fractured
Recently Published Documents


TOTAL DOCUMENTS

1835
(FIVE YEARS 279)

H-INDEX

50
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Osman H. Hamid ◽  
Reza Sanee ◽  
Gbenga Folorunso Oluyemi

Abstract Fracture characterization, including permeability and deformation due to fluid flow, plays an essential role in hydrocarbon production during the development of naturally fractured reservoirs. The conventional way of characterization of the fracture is experimental, and modeling approaches. In this study, a conceptual model will be developed based on the structural style to study the fracture distributions, the influence of the fluid flow and geomechanics in the fracture conductivity, investigate the stress regime in the study area. Understanding the fracture properties will be conducted by studying the fracture properties from the core sample, image log interpretation. 3D geomechanical models will be constructed to evaluate the fluid flow properties; the models consider the crossflow coefficient and the compression coefficient. According to the model results, the fracture permeability decreases with increasing effective stress. The degree of decline is related to the crossflow coefficient and the compression coefficient. Most of these reservoirs are mainly composed of two porosity systems for fluid flow: the matrix component and fractures. Therefore, fluid flow path distribution within a naturally fractured reservoir depends on several features related to the rock matrix and fracture systems' properties. The main element that could help us identify the fluid flow paths is the critical stress analysis, which considers the in-situ stress regime model (in terms of magnitude and direction) and the spatial distributions of natural fractures fluid flow path. The critical stress requires calculating the normal and shear stress in each fracture plane to evaluate the conditions for critical and non-critical fractures. Based on this classification, some fractures can dominate the fluid-flow paths. To perform the critical stress analysis, fracture characterization and stress analysis were described using a 3D stress tensor model capturing the in-situ stress direction and magnitude applied to a discrete fracture model, identifying the fluid flow paths along the fractured reservoir. The results show that in-situ stress rotation observed in the breakouts or drilling induce tensile fractures (DITFs) interpreted from borehole images. The stress regime changes are probably attributed to some influence of deeply seated faults under the studied sequence. the flow of water-oil ratio through intact rock and fractures with/without imbibition was modeled based on the material balance based on preset conceptual reservoir parameters to investigate the water-oil ratio flow gradients


2021 ◽  
Author(s):  
Faizan Ahmed Siddiqi ◽  
Carlos Arturo Banos Caballero ◽  
Fabricio Moretti ◽  
Mohamed AlMahroos ◽  
Uttam Aswal ◽  
...  

Abstract Lost circulation is one of the major challenges while drilling oil and gas wells across the world. It not only results in nonproductive time and additional costs, but also poses well control risk while drilling and can be detrimental to zonal isolation after the cementing operation. In Ghawar Gas field of Saudi Arabia, lost circulation across some naturally fractured formations is a key risk as it results in immediate drilling problems such as well control, formation pack-off and stuck pipe. In addition, it can lead to poor isolation of hydrocarbon-bearing zones that can result in sustained casing pressure over the life cycle of the well. A decision flowchart has been developed to combat losses across these natural fractures while drilling, but there is no single solution that has a high success rate in curing the losses and regaining returns. Multiple conventional lost circulation material pills, conventional cement plugs, diesel-oil-bentonite-cement slurries, gravel packs, and reactive pills have been tried on different wells, but the probability of curing the losses is quite low. The success with these methods has been sporadic and shown poor repeatability, so the need of an engineered approach to mitigate losses is imperative. An engineered composite lost-circulation solution was designed and pumped to regain the returns successfully after total losses across two different formations on a gas well in Ghawar field. Multiple types of lost-circulation material were tried on this well; however, all was lost to the naturally fractured carbonate formation. Therefore, a lost-circulation solution was proposed that included a fiber-based lost-circulation control (FBLC) pill, composed of a viscosifier, optimized solid package and engineered fiber system, followed by a thixotropic cement slurry. The approach was to pump these fluids in a fluid train so the FBLC pill formed a barrier at the face of the formation while the thixotropic cement slurry formed a rapid gel and quickly set after the placement to minimize the risk of losing all the fluids to the formation. Once this solution was executed, it helped to regain fluid returns successfully across one of the naturally fractured zones. Later, total losses were encountered again across a deeper loss zone that were also cured using this novel approach. The implementation of this lost-circulation system on two occasions in different formations has proven its applicability in different conditions and can be developed into a standard engineered approach for curing losses. It has greatly helped to build confidence with the client, as it contributed towards minimizing non-productive time, mitigated the risk of well control, and assisted in avoiding any remedial cementing operations that may have developed due to poor zonal isolation across certain critical flow zones.


2021 ◽  
Author(s):  
Amjed Mohamed Hassan ◽  
Murtada Saleh Aljawad ◽  
Mohamed Ahmed Mahmoud

Abstract Acid fracturing treatments are conducted to increase the productivity of naturally fractured reservoirs. The treatment performance depends on several parameters such as reservoir properties and treatment conditions. Different approaches are available to estimate the efficacy of acid fracturing stimulations. However, a limited number of models were developed considering the presence of natural fractures (NFs) in the hydrocarbon reservoirs. This work aims to develop an efficient model to estimate the effectiveness of acid fracturing treatment in naturally fractured reservoirs utilizing an artificial neural network (ANN) technique. In this study, the improvement in hydrocarbon productivity due to applying acid fracturing treatment is estimated, and the interactions between the natural fractures and the induced ones are considered. More than 3000 scenarios of reservoir properties and treatment parameters were used to build and validate the ANN model. The developed model considers reservoir and treatment parameters such as formation permeability, injection rate, natural fracture spacing, and treatment volume. Furthermore, percentage error and correlation coefficient were determined to assess the model prediction performance. The proposed model shows very effective performance in predicting the performance of acid fracturing treatments. A percentage error of 6.3 % and a correlation coefficient of 0.94 were obtained for the testing datasets. Furthermore, a new correlation was developed based on the optimized AI model. The developed correlation provides an accurate and quick prediction for productivity improvement. Validation data were used to evaluate the reliability of the new equation, where a 6.8% average absolute error and 0.93 correlation coefficient were achieved, indicating the high reliability of the proposed correlation. The novelty of this work is developing a robust and reliable model for predicting the productivity improvement for acid fracturing treatment in naturally fractured reservoirs. The new correlation can be utilized in improving the treatment design for naturally fractured reservoirs by providing quick and reliable estimations.


2021 ◽  
Author(s):  
Chaitanya Behera ◽  
Majda Balushi ◽  
Badar Al Said ◽  
Jeppe Gavholt ◽  
Loic Bazzalgette ◽  
...  

Abstract Global experience in cold Gas Oil Gravity Drainage (cGOGD) recovery with crestal gas injection of infield produced gas is very limited, but is a proven economic recovery method for fractured carbonate reservoirs in North Oman. Despite decades of research in nature of fluid flow in fracture-matrix media and application of sophisticated tools in building fracture model of a naturally fractured reservoir (NFR) reliable prediction of the GOGD production performance often proved elusive. Characterization of fracture networks and modeling of matrix-fracture transfer function, gravity induced fluid flow in heterogeneous matrix media especially in case of capillary discontinuity due to tight interbedded matrix and capillary pressure hysteresis are the key challenges for reservoir modeller. Re-infiltration of oil into lower matrix blocks, matrix permeability, fracture density and spacing, wettability and reservoir fluid properties have significant impact on the well and field performance. The risk posed due to undermining the key modeling parameters have huge implication on facility design, subsurface concept and value of the project. The challenges in upscaling the fracture properties in a range of grid scale, experimental design for history matching and uncertainty analysis, understanding the oil rim development in leached zone and numerical options are some of the key aspects which have been illustrated in this paper. The field being on primary production since 1985, showed poor recovery and high water cut. Multi-episodic tectonic events resulted in variable fracture intensity and fracture permeability anisotropy. This study investigated the effects of the parameters on cGOGD recovery process, operating strategy (e.g., gas injection rate and liquid offtake) and on the overall field performance. The development decisions are not simply relied upon the dynamic simulator results, but an integrated understanding from comprehensive analytical calculations for multiple recovery mechanism such as fluid expansion, fracture oil displacement, gravity drainage from background matrix and leached zone and analogue field GOGD performance were taken into consideration. The subsurface development decisions such as producer location with respect to faults and lineament, well pattern & spacing, producer depth, gas injector locations, gas injection scenarios, aquifer pump-out wells and maximum off-take rate were analyzed and optimum decision could be taken from multi-scenario modeling studies. The GOGD development could increase the field recovery up to ~9% at low UTC and positive NPV. A pragmatic and integrated modeling workflow with multi-scenario modeling approach was pursued to address the development risk which facilitated the field to be economically developed. The key modeling challenges have been highlighted for GOGD modeling process with gas recycling option of development which can be replicated in similar fields in PDO.


2021 ◽  
Author(s):  
Mahamat Habib Abdelkerim Doutoum ◽  
Romulo Francisco Bermudez Alvarado ◽  
Ahmed Rashed Alaleeli ◽  
Thein Zaw Phyoe ◽  
Jose Salazar ◽  
...  

Abstract Lost circulation while drilling across vugular or naturally fractured limestone formations is a costly challenge and has financial impacts including nonproductive time and remedial operational expenses. Many fields in the UAE are encountering notorious lost circulation complications, which are difficult to control with conventional lost circulation solutions while drilling surface sections. Novel lightweight thixotropic cement has proven beneficial to take control of severe losses in these vugular and naturally fractured limestone formations. The main challenge while drilling across the surface section in UAE offshore field is the heavy or total loss of returns. Drilling performance is affected due to poor hole cleaning, a risk of stuck pipe, surface fluid handling problems, and well control risks. Conventional extended cement slurries have been widely used to cure losses while drilling but with limited success. A new lost circulation solution combines lightweight (10.5- lbm/galUS) high solids fraction cement (trimodal system) and a thixotropic agent, which develop fast gels with high compressive strength. Thus, it enables plugging of large voids and fractures to deliver the wellbore integrity required to continue drilling with enhanced performance and efficiency. Intensive laboratory qualification tests focusing on static gel strength and compressive strength development was performed to tailor the new solution. The results were promising with more than 100 lbf/100 ft2 of static gel strength in 10 minutes and compressive strength development of 1,000 psi within 24 hours at low surface temperature. In addition, a transition time (TT) on-off-on test demonstrated more rapid gel strength development when the shear is reduced and regained fluidity with reapplication of shear. In one of the wells, heavy losses were encountered while drilling across surface section. The lightweight thixotropic solution was pumped for the first time worldwide and it was shown that the innovative lost circulation solution was effective in significantly reducing the losses and enabled the operator to continue drilling to section TD. This case study demonstrates that this advanced system is effective in curing losses and reducing nonproductive time. The unique properties of faster rapid gel strength and high compressive strength make this solution effective for treating a wide range of lost circulation events while drilling. Furthermore, the advanced lightweight thixotropic cement lost circulation solution exhibits strong performance in curing heavy losses and establishing well integrity with reliability.


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121714
Author(s):  
Guicheng Jing ◽  
Zhangxin Chen ◽  
Gang Hui

Sign in / Sign up

Export Citation Format

Share Document