Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis

Author(s):  
Ahmed K. Abbas ◽  
Usama Alameedy ◽  
Mortadha Alsaba ◽  
Salih Rushdi
SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1178-1188 ◽  
Author(s):  
Amin Mehrabian ◽  
Younane Abousleiman

Summary Wellbore tensile failure is a known consequence of drilling with excessive mud weight, which can cause costly events of lost circulation. Despite the successful use of lost-circulation materials (LCMs) in treating lost-circulation events of the drilling operations, extensions of wellbore-stability models to the case of a fractured and LCM-treated wellbore have not been published. This paper presents an extension of the conventional wellbore-stability analysis to such circumstances. The proposed wellbore geomechanics solution revisits the criteria for breakdown of a fractured wellbore to identify an extended margin for the equivalent circulation density (ECD) of drilling. An analytical approach is taken to solve for the related multiscale and nonlinear problem of the three-way mechanical interaction between the wellbore, fracture wings, and LCM aggregate. The criteria for unstable propagation of existing near-wellbore fractures, together with those for initiating secondary fractures from the wellbore, are obtained. Results suggest that, in many circumstances, the occurrence of both incidents can be prevented, if the LCM blend is properly engineered to recover certain depositional and mechanical properties at downhole conditions. Under such optimal design conditions, the maximum ECD to which the breakdown limit of a permeable formation could be enhanced is predicted.


2012 ◽  
Author(s):  
Qiuguo Li ◽  
Xing Zhang ◽  
Khalid Salim Al-Ghammari ◽  
Labib Mohsin

2001 ◽  
Vol 41 (1) ◽  
pp. 609
Author(s):  
X. Chen ◽  
C.P. Tan ◽  
C.M. Haberfield

To prevent or minimise wellbore instability problems, it is critical to determine the optimum wellbore profile and to design an appropriate mud weight program based on wellbore stability analysis. It is a complex and iterative decisionmaking procedure since various factors, such as in-situ stress regime, material strength and poroelastic properties, strength and poroelastic anisotropies, initial and induced pore pressures, must be considered in the assessment and determination.This paper describes the methodology and procedure for determination of optimum wellbore profile and mud weight program based on rock mechanics consideration. The methodology is presented in the form of guideline charts and the procedure of applying the methodology is described. The application of the methodology and procedure is demonstrated through two field case studies with different in-situ stress regimes in Australia and Indonesia.


Sign in / Sign up

Export Citation Format

Share Document