Petrophysical Evaluation of Shale Gas Reservoirs: A Field Case Study of Marcellus Shale

Author(s):  
Levent Taylan Ozgur Yildirim ◽  
John Yilin Wang ◽  
Derek Elsworth
2021 ◽  
Vol 198 ◽  
pp. 108225
Author(s):  
Qamar Yasin ◽  
Syrine Baklouti ◽  
Perveiz Khalid ◽  
Syed Haroon Ali ◽  
Cyril D. Boateng ◽  
...  

2008 ◽  
Author(s):  
David J. Jacobi ◽  
Mikhail Gladkikh ◽  
Brian LeCompte ◽  
Gabor Hursan ◽  
Freddy Mendez ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 589-600 ◽  
Author(s):  
Wei Yu ◽  
Kamy Sepehrnoori ◽  
Tadeusz W. Patzek

Summary Production from shale-gas reservoirs plays an important role in natural-gas supply in the United States. Horizontal drilling and multistage hydraulic fracturing are the two key enabling technologies for the economic development of these shale-gas reservoirs. It is believed that gas in shale reservoirs is mainly composed of free gas within fractures and pores and adsorbed gas in organic matter (kerogen). It is generally assumed in the literature that the monolayer Langmuir isotherm describes gas-adsorption behavior in shale-gas reservoirs. However, in this work, we analyzed four experimental measurements of methane adsorption from the Marcellus Shale core samples that deviate from the Langmuir isotherm, but obey the Brunauer-Emmett-Teller (BET) isotherm. To the best of our knowledge, it is the first time to find that methane adsorption in a shale-gas reservoir behaves similar to multilayer adsorption. Consequently, investigation of this specific gas-desorption effect is important for accurate evaluation of well performance and completion effectiveness in shale-gas reservoirs on the basis of the BET isotherm. The difference in calculating original gas in place (OGIP) on the basis of both isotherms is discussed. We also performed history matching with one production well from the Marcellus Shale and evaluated the contribution of gas desorption to the well's performance. History matching shows that gas adsorption obeying the BET isotherm contributes more to overall gas recovery than gas adsorption obeying the Langmuir isotherm, especially at early time in production. This work provides better understanding of gas desorption in shale-gas reservoirs and updates our current analytical and numerical models for simulation of shale-gas production.


2015 ◽  
Vol 17 (2) ◽  
Author(s):  
Pamela Cardoso Vilela ◽  
Alexandre de Castro Leiras Gomes

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xiaofei Shang ◽  
Huawei Zhao ◽  
Shengxiang Long ◽  
Taizhong Duan

Shale gas reservoir evaluation and production optimization both require geological models. However, currently, shale gas modeling remains relatively conventional and does not reflect the unique characteristics of shale gas reservoirs. Based on a case study of the Fuling shale gas reservoir in China, an integrated geological modeling workflow for shale gas reservoirs is proposed to facilitate its popularization and application and well improved quality and comparability. This workflow involves four types of models: a structure-stratigraphic model, reservoir (matrix) parameter model, natural fracture (NF) model, and hydraulic fracture (HF) model. The modeling strategies used for the four types of models vary due to the uniqueness of shale gas reservoirs. A horizontal-well lithofacies sublayer calibration-based method is employed to build the structure-stratigraphic model. The key to building the reservoir parameter model lies in the joint characterization of shale gas “sweet spots.” The NF models are built at various scales using various methods. Based on the NF models, the HF models are built by extended simulation and microseismic inversion. In the entire workflow, various types of models are built in a certain sequence and mutually constrain one another. In addition, the workflow contains and effectively integrates multisource data. Moreover, the workflow involves multiple model integration processes, which is the key to model quality. The selection and optimization of modeling methods, the innovation and development of modeling algorithms, and the evaluation techniques for model uncertainty are areas where breakthroughs may be possible in the geological modeling of shale gas reservoirs. The workflow allows the complex process of geological modeling of shale gas reservoirs to be more systematic. It is of great significance for a dynamic analysis of reservoir development, from individual wells to the entire gas field, and for optimizing both development schemes and production systems.


Sign in / Sign up

Export Citation Format

Share Document