net pressure
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 21)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Mark Mcclure ◽  
Garrett Fowler ◽  
Matteo Picone

Abstract In URTeC-123-2019, a group of operators and service companies presented a step-by-step procedure for interpretation of diagnostic fracture injection tests (DFITs). The procedure has now been applied on a wide variety of data across North and South America. This paper statistically summarizes results from 62 of these DFITs, contributed by ten operators spanning nine different shale plays. URTeC-123-2019 made several novel claims, which are tested and validated in this paper. We find that: (1) a ‘compliance method’ closure signature is apparent in the significant majority of DFITs; (2) in horizontal wells, early time pressure drop due to near-wellbore/midfield tortuosity is substantial and varies greatly, from 500 to 6000+ psi; (3) in vertical wells, early-time pressure drop is far weaker; this supports the interpretation that early- time pressure drop in horizontal wells is caused by near-wellbore/midfield tortuosity from transverse fracture propagation; (4) the (not recommended) tangent method of estimating closure yields Shmin estimates that are 100-1000+ psi lower than the estimate from the (recommended) compliance method; the implied net pressure values are 2.5x higher on average and up to 5-6x higher; (5) as predicted by theory, the difference between the tangent and compliance stress and net pressure estimates increases in formations with greater difference between Shmin and pore pressure; (6) the h-function and G-function methods allow permeability to be estimated from truncated data that never reaches late-time impulse flow; comparison shows that they give results that are close to the permeability estimates from impulse linear flow; (7) false radial flow signatures occur in the significant majority of gas shale DFITs, and are rare in oil shale DFITs; (8) if false radial signatures are used to estimate permeability, they tend to overestimate permeability, often by 100x or more; (9) the holistic-method permeability correlation overestimates permeability by 10-1000x; (10) in tests that do not reach late-time impulse transients, it is reasonable to make an approximate pore pressure estimate by extrapolating the pressure from the peak in t*dP/dt using a scaling of t^(-1/2) in oil shales and t^(3/4) in gas shales. The findings have direct practical implications for operators. Accurate permeability estimates are needed for calculating effective fracture length and for optimizing well spacing and frac design. Accurate stress estimation is fundamental to hydraulic fracture design and other geomechanics applications.


2021 ◽  
Author(s):  
Abdul Muqtadir Khan ◽  
Abdullah BinZiad ◽  
Abdullah Al Subaii ◽  
Denis Bannikov ◽  
Maksim Ponomarev ◽  
...  

Abstract Vertical wells require diagnostic techniques after minifrac pumping to interpret fracture height growth. This interpretation provides vital input to hydraulic fracturing redesign workflows. The temperature log is the most widely used technique to determine fracture height through cooldown analysis. A data science approach is proposed to leverage available measurements, automate the interpretation process, and enhance operational efficiency while keeping confidence in the fracturing design. Data from 55 wells were ingested to establish proof of concept.The selected geomechanical rock texture parameters were based on the fracturing theory of net-pressure-controlled height growth. Interpreted fracture height from input temperature cooldown analysis was merged with the structured dataset. The dataset was constructed at a high vertical depth of resolution of 0.5 to 1 ft. Openhole log data such as gamma-ray and bulk density helped to characterize the rock type, and calculated mechanical properties from acoustic logs such as in-situ stress and Young's modulus characterize the fracture geometry development. Moreover, injection rate, volume, and net pressure during the calibration treatment affect the fracture height growth. A machine learning (ML) workflow was applied to multiple openhole log parameters, which were integrated with minifrac calibration parameters along with the varying depth of the reservoir. The 55 wells datasets with a cumulative 120,000 rows were divided into training and testing with a ratio of 80:20. A comparative algorithm study was conducted on the test set with nine algorithms, and CatBoost showed the best results with an RMSE of 4.13 followed by Random Forest with 4.25. CatBoost models utilize both categorical and numerical data. Stress, gamma-ray, and bulk density parameters affected the fracture height analyzed from the post-fracturing temperature logs. Following successful implementation in the pilot phase, the model can be extended to horizontal wells to validate predictions from commercial simulators where stress calculations were unreliable or where stress did not entirely reflect changes in rock type. By coupling the geometry measurement technology with data analysis, a useful automated model was successfully developed to enhance operational efficiency without compromising any part of the workflow. The advanced algorithm can be used in any field where precise fracture placement of a hydraulic fracture contributes directly to production potential. Also, the model can play a critical role in cube development to optimize lateral landing and lateral density for exploration fields.


2021 ◽  
Author(s):  
Yan Qiao ◽  
Yang Zhang ◽  
Tianhong Jiang ◽  
Guobin Zhang ◽  
Qing Chen ◽  
...  

Abstract During hydraulic fracturing process of the Permian Basin in North America, the cluster spacing has been shortened to 3m, and stress shadow can no longer be ignored. Many scholars have studied the influence of stress shadows to optimize cluster spacing. For reservoirs with natural fractures, how to activate more natural fractures through hydraulic fracturing has become the purpose. However, few scholars have studied changes in the activation law of natural fractures under stress shadow conditions. This paper establishes stress change value around single fracture according to Sneddon formula, and calculates the maximum and minimum principal stress according to plane principal stress calculation formula. Considering attenuation of net pressure, stress field of multiple fractures is established, and influence of various factors on stress re-orientation is studied. Finally, considering attenuation of net pressure with distance, according to discriminant formulas of tension & shear activation, the proportion of natural fractures that are easily activated is calculated. By designing orthogonal experiments, the influence of different factors on the proportion of activated natural fractures was studied. The stress increase in the direction of the minimum principal stress is much greater than the increase in the direction of the maximum principal stress. The stress increases in the direction of the maximum principal stress at the tip of the hydraulic fracture. The tip position between hydraulic fractures is "neutralized" due to the superposition of shear stress. Stress-fracture angle and the in-situ stress difference are the common main influencing factors for both tensile and shear activation, but the net pressure has little effect on the tensile activation of natural fracture. The fracture spacing has little effect on the activation of natural fractures. When formulating the fracturing scheme, we should pay more attention to the net pressure rather than the fracture spacing. This article provides a fast calculation method for the activation state of natural fractures considering the stress shadow, which provides a reference index for activating more natural fractures and increasing the production of a single well.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012022
Author(s):  
N Somboonkittichai

Abstract A liquid metallic surface exposed to a plasma interacts with ions and electrons numerously. The surface becomes charged. Subsequently, the electric field is formed via the balance of incoming ion and electron currents. The kinetic energies and the momentum of the incoming ions and electrons are transferred to the surface. This is enhanced by the self-generated electric field and gives rise to notable pressures and energy fluxes on the surface. By adopting several plasma and liquid parameters to the physical models, the time evolution of the surface temperature can be characterized with the net energy flux, the net pressure, and the net impurity outgoing flux. The study suggests that electron temperature and ion mass significantly govern, but the ion to electron temperature ratio does not, the trend of the surface temperature. Besides, it is found that at long elapsed time at which evaporation becomes strong, the energy and impurity fluxes reduce in conjunction with the rate of change of the surface temperature lessens.


2021 ◽  
Author(s):  
Vibhas J. Pandey

Abstract Acid fracturing is a preferred method of stimulating low permeability limestone formations throughout the world. The treatment consists of pumping alternating cycles of viscous pad and acid to promote differential etching, thereby creating a conductive acid-etched fracture. Acid-type, pad and acid volumes, and the injection rates in the designed pump schedule are based on treatment objectives, rock-types and in-situ conditions such as temperatures, in-situ stress, proximity to water-bearing layers, and others. During the acid fracturing treatment, the acid-rock interaction is often marked by signature pressure responses, that are a combined outcome of acid reaction kinetics, responses to changes in fluid viscosity and densities, fluid-frictional drop in narrow hydraulic fractures, and other such parameters. This paper focuses on interpretation of bottomhole pressures during acid fracturing treatment to separate these individual effects and determine the effectiveness of the treatment. Unlike propped fracturing treatments where most fracturing treatments result in net pressure gain, acid fracturing treatments seldom result in net pressure increase at the end of the treatment because the in-situ stresses are generally relieved during the rock-dissolution and fracture width creation process that results from acid-mineral reactions. Not only is the extent of stress relief evident from the difference in the start and the end of the treatment instantaneous shut-in pressures, the loss of stresses is also apparent during the treatment itself, especially in jobs where the treatment data is constantly monitored and evaluated in real-time. The study reveals that the changes in pressure responses with the onset of acid in the formation can be successfully used to determine the effectiveness of treatment design and can aid in carrying out informed changes during the treatment. Better understanding of these responses can also lead to more effective treatment designs for future jobs. The interpretation developed in the study can be applied to most of the acid fracturing treatments that are pumped worldwide.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5266
Author(s):  
Dong-Jin Cheon ◽  
Yong-Chul Kim ◽  
Jong-Ho Lee ◽  
Sung-Won Yoon

Cladding for dome roofs is often made of membrane materials that are light and easy to install. Due to these characteristics, wind damage to dome roof cladding is very common. In particular, open or retractable dome roofs are prone to wind damage because of inadequacies in wind load calculations. In this study, the wind pressure characteristics of a dome with a central opening were investigated. Wind tunnel tests were performed, and the pressure distribution was investigated by analyzing external and internal pressure coefficients. Based on the experimental results, the peak net pressure coefficients for the cladding design of a dome roof with a central opening were proposed. For the external peak pressure coefficients, the values of leeward regions were similar despite height–span ratios and turbulence intensity values. For the internal peak pressure coefficients, negative pressure was dominant, and the coefficients were not significantly affected by changes in height–span ratio. This tendency locally increased the negative peak net pressure, in which the load acts in the upward direction, and relatively significantly increased the positive peak net pressure, in which the load acts in the downward direction.


2021 ◽  
Author(s):  
Vibhas J. Pandey ◽  
Vamegh Rasouli

AbstractFracture growth in layered formations with depth-dependent properties has been a topic of interest amongst researchers because of its critical influence on well performance. This paper revisits some of the existing height-growth models and discusses the evaluation process of a new and modified model developed after incorporating additional constraints.The net-pressure is the primary driver behind fracture propagation and the pressure distribution in the fracture plays an important role in vertical propagation, as it supplies the necessary energy for fracture advancement in the presence of opposing forces. The workflow adopted for this study included developing a preliminary model that solves a system of non-linear equations iteratively to arrive at fracture height versus net pressure mapping. The theoretical results were then compared to those available in the literature. The solution set was then extended to a 100-layer model after incorporating additional constraints using superposition techniques.The predicted outcomes were finally compared to the fracture height observations made in the field on several treatments.A reasonable agreement between model-predicted and observed height was observed when a comparison between the two was made, for most cases.The majority of these treatments were pumped in vertical wells, at low injection rates of up to 8.0 bbl/min (0.021 m3/s) where net pressures were intentionally restricted to 250 psi (1.72 MPa) in order to prevent fracture rotation to the horizontal plane.The leak-off was minimal given the low permeability formations. In some cases, however, the pumping parameters and fluid imparted pressure distribution appeared to dominate. Overall, it was apparent that for a slowly advancing fracture front, which is the case in low injection rate treatments, the fracture height could be predicted with reasonable accuracy. This condition could also be met in high rate treatments pumped down multiple perforation clusters such as in horizontal wells, though fracture-height measurement may not be as straightforward as in vertical wells.The model developed under the current study is suitable for vertical wells where fracture treatments are pumped at low injection rates. The solid-mechanics solution that is presented here is independent of pumping parameters and can be readily implemented to assist in selection of critical design parameters prior to the job, with a wide range of applicability worldwide.


2021 ◽  
Author(s):  
Jagaan Selladurai ◽  
Cheol Hwan Roh ◽  
Amr Zeidan ◽  
Saurabh Anand ◽  
Bahrom Madon ◽  
...  

Abstract Malaysian clastic reservoirs are plagued with high fines content which rapidly deteriorates the productivity from wells completed with conventional form of sand control techniques. To mitigate the fines production issue, Petronas recently successfully completed 3 reservoirs in two wells in Field-D using enhanced gravel pack technique. This paper explains in detail the workflow, challenges such as depleted reservoirs, coal streaks, and nearby water contacts and operational execution for the successful re-defined extension pack jobs. This new approach consists of a re-defined Extension Pack / Frac Pack job with fine movement control resin and a re-defined perforation strategy. Perforation strategy consists of limited number of 180 deg phasing non-oriented perforations done under dynamic underbalance conditions. The key requirement to have fracturing as a sand control method is to have a tip screen out (TSO) or high net pressure placement to ensure the fracture has good conductivity. To obtain a good TSO, data acquisition is of paramount importance. The fracturing jobs in the Field – D wells were preceded with step-rate tests, injection tests, minifrac and Diagnostic Fracture Injection Test (DFIT). The data from diagnostic tests were used diligently to have best possible fracturing treatment in the target zones. Excellent pack factors of greater than 500 lbs. per ft were obtained for all the treatment jobs using only linear gel with proppant concentration up to 7 ppa. This high pack factor translates to very good frac conductivity which is essential in fracturing for sand control. Some of the fracturing treatments concluded with a TSO signature which is a big achievement considering the challenges that were associated with fracturing in Field – D. In addition, DFIT and ACA (After Closure Analysis) was performed to estimate permeability and results were compared with various techniques such as log derived and formation tester permeability. Ultimate objective from this analysis is to have a work-flow which can screen candidate wells for such treatments from openhole logs and give an estimated liquid rate post treatment. Also, the workflow for planning and executing fracturing jobs will be presented for Malaysian clastic reservoirs. This work-flow will be vetted against the extensive diagnostic and fracturing data that has been acquired during fracturing treatments in Field – D. Design, actual diagnostic, and fracturing data will be presented in this paper. It is expected that this modified form of sand and fines control will help in reducing the fines issue in Field – D to a great extent along with expected incremental in oil production. If long term production sustainability is proven, similar approach will be adopted by Petronas and can be shared amongst other South East Asia operators in many similar other fields.


Author(s):  
Yuchen Wang ◽  
Kenji Satake

Abstract The 2016 Fukushima earthquake (M 7.4) generated a moderate tsunami, which was recorded by the offshore pressure gauges of the Seafloor Observation Network for Earthquakes and Tsunamis (S-net). We used 28 S-net pressure gauge records for tsunami data assimilation and forecasted the tsunami waveforms at four tide gauges on the Sanriku coast. The S-net raw records were processed using two different methods. In the first method, we removed the tidal components by polynomial fitting and applied a low-pass filter. In the second method, we used a real-time tsunami detection algorithm based on ensemble empirical mode decomposition to extract the tsunami signals, imitating real-time operations for tsunami early warning. The forecast accuracy scores of the two detection methods are 60% and 74%, respectively, for a time window of 35 min, but they improve to 89% and 94% if we neglect the stations with imperfect modeling or insufficient offshore observations. Hence, the tsunami data assimilation approach can be put into practice with the help of the real-time tsunami detection algorithm.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Peidong Zhao ◽  
K. E. Gray

Summary Stimulated reservoir volume (SRV) is a prime factor controlling well performance in unconventional shale plays. In general, SRV describes the extent of connected conductive fracture networks within the formation. Being a pre-existing weak interface, natural fractures (NFs) are the preferred failure paths. Therefore, the interaction of hydraulic fractures (HFs) and NFs is fundamental to fracture growth in a formation. Field observations of induced fracture systems have suggested complex failure zones occurring in the vicinity of HFs, which makes characterizing the SRV a significant challenge. Thus, this work uses a broad range of subsurface conditions to investigate the near-tip processes and to rank their influences on HF-NF interaction. In this study, a 2D analytical workflow is presented that delineates the potential slip zone (PSZ) induced by a HF. The explicit description of failure modes in the near-tip region explains possible mechanisms of fracture complexity observed in the field. The parametric analysis shows varying influences of HF-NF relative angle, stress state, net pressure, frictional coefficient, and HF length to the NF slip. This work analytically proves that an NF at a 30 ± 5° relative angle to an HF has the highest potential to be reactivated, which dominantly depends on the frictional coefficient of the interface. The spatial extension of the PSZ normal to the HF converges as the fracture propagates away and exhibits asymmetry depending on the relative angle. Then a machine-learning (ML) model [random forest (RF) regression] is built to replicate the physics-based model and statistically investigate parametric influences on NF slips. The ML model finds statistical significance of the predicting features in the order of relative angle between HF and NF, fracture gradient, frictional coefficient of the NF, overpressure index, stress differential, formation depth, and net pressure. The ML result is compared with sensitivity analysis and provides a new perspective on HF-NF interaction using statistical measures. The importance of formation depth on HF-NF interaction is stressed in both the physics-based and data-driven models, thus providing insight for field development of stacked resource plays. The proposed concept of PSZ can be used to measure and compare the intensity of HF-NF interactions at various geological settings.


Sign in / Sign up

Export Citation Format

Share Document