Foam Displacements with Multiple Steady States

SPE Journal ◽  
2007 ◽  
Vol 12 (01) ◽  
pp. 5-18 ◽  
Author(s):  
William Richard Rossen ◽  
Johannes Bruining

Summary A number of experimental and theoretical studies suggest that the fractional-flow function for foam can be either multivalued in water saturation or else can comprise distinct fractional-flow curves for two or more foam regimes, with jumps between them where each regime reaches its limiting condition. We construct fractional-flow solutions for these cases. When such a foam is employed in a surfactant-alternating-gas (SAG) process, the usual "tangency" condition is modified and the foam can be considerably weaker than the foam formed at what appears to be the point of tangency of the multivalued fractional-flow function. If the capillary-pressure function Pc (Sw) differs between foam regimes, that difference can substantially change the nature of the displacement. This alters the effective fractional-flow function and hence the global solution of the equations. It is therefore important to determine how capillary pressure varies in foam displacements, by direct measurement in situ if possible. Special care is needed in numerical simulation of processes using fixed grids if capillary pressure depends directly on foam regime. Using gridblocks that are too large can weaken the effect of capillary pressure that would enforce the correct shock on the small scale. Using an upscaled fractional-flow function appears to eliminate this problem, however. Introduction Foams are injected into geological formations for gas diversion in improved oil recovery (IOR) (Schramm 1994; Rossen 1996), acid diversion in matrix acid well stimulation (Gdanski 1993), and environmental remediation (Hirasaki et al. 2000). In IOR and environmental remediation, it is often useful to inject gas and surfactant solution in alternating slugs, a process called SAG injection. SAG injection holds several advantages over continuous coinjection of gas and liquid, as described elsewhere (Shi and Rossen 1998; Shan and Rossen 2004). Method of Characteristics and Fractional-Flow Theory. Many problems involving conservation equations can be formulated in the so-called hyperbolic framework. The ensuing equations can then be solved using the method of characteristics (see, for example, Smoller (1980), after page 266). The solution consists of rarefactions or spreading waves, constant states, and shocks. Additional conditions are also required to obtain a unique solution. Numerical solutions of the equations can, in effect, pick out the wrong uniqueness conditions and give inaccurate results. A complete analysis requires the traveling-wave representation of a shock. Bruining and Van Duijn (2000, 2007) present an example in which the conditions on the traveling wave are essential to identifying the correct solution of the macroscopic equations. Bruining et al. (2002, 2004) give a regularization procedure for constructing such a traveling wave solution for an application of steam injection. The conditions on the traveling wave must be kept in mind when using a graphical procedure for finding the solution with the method of characteristics, a technique introduced by Buckley and Leverett (1941). It is widely used for petroleum engineering applications [see also Pope (1980), who generalized fractional-flow theory to deal with more complex problems]. In this formulation, the uniqueness condition is called the Welge tangent condition (1952).

SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2308-2316 ◽  
Author(s):  
K. S. Schmid ◽  
N.. Alyafei ◽  
S.. Geiger ◽  
M. J. Blunt

Summary We present analytical solutions for capillary-controlled displacement in one dimension by use of fractional-flow theory. We show how to construct solutions with a spreadsheet that can be used for the analysis of experiments as well as matrix-block-scale recovery in field settings. The solutions can be understood as the capillary analog to the classical Buckley-Leverett solution (Buckley and Leverett 1942) for viscous-dominated flow, and are valid for cocurrent and countercurrent spontaneous imbibition (SI), as well as for arbitrary capillary pressure and relative permeability curves. They can be used to study the influence of wettability, predicting saturation profiles and production rates characteristic for water-wet and mixed-wet conditions. We compare our results with in-situ measurements of saturation profiles for SI in a water-wet medium. We show that the characteristic shape of the saturation profile is consistent with the expected form of the relative permeabilities. We discuss how measurements of imbibition profiles, in combination with other measurements, could be used to determine relative permeability and capillary pressure.


1980 ◽  
Vol 20 (03) ◽  
pp. 191-205 ◽  
Author(s):  
Gary A. Pope

Introduction Fractional flow theory has been applied by various authors to waterflooding, polymer flooding, carbonated waterflooding, alcohol flooding, miscible flooding, steamflooding, and various types of surfactant flooding. Many of the assumptions made by these authors are the same and are necessary for obtaining simple analytical or graphical solutions to the continuity equations. Typically, the major assumptions, which are sometimes not stated explicitly, are:one dimensional flow in a homogeneous, isotropic, isothermal porous medium,at most, two phases are flowing,at most, three components are flowing,local equilibrium exists,the fluids are incompressible,for sorbing components, the adsorption isotherm depends only on one component and has negative curvature,dispersion is negligible,gravity and capillarity are negligible,no fingering occurs,Darcy's law applies,the initial distribution of fluids is uniform, anda continuous injection of constant composition is injected, starting at time zero. Several of these assumptions are relaxed easily. One of the most useful to relax is Assumption 12, continuous injection. The principles of chromatography can be applied to analyze the more interesting case of injecting one or more slugs. Most of these processes require slug injection of chemical or solvent to be economical. In fact, a lower bound on the slug size necessary to prevent slug breakdown can be obtained from a simple extension of fractional flow theory. In this and other extensions the common new feature is the need to evaluate more than one characteristic velocity. A second example of this is the extension of fractional flow theory from simultaneous immiscible two-phase flow (the classical Buckley-Leverett waterflood problem) to simultaneous immiscible three-phase flow (the classical oil/water/gas flow problem). A third example is the extension to nonisothermal cases. Here we need to consider the energy balance, mass balance, and velocity of a front of constant temperature. A fourth example is when one or more components are partitioning between phases. In all cases, mathematically, the extension is analogous to the generalization from the one-component adsorption problems (or two-component ion exchange problems with a stoichiometric constraint) to multicomponent sorption problems. The latter theory has been worked out in a very general way for many component systems using the concept of coherence. Pope et al. recently have applied this theory to reservoir engineering involving sorption problems. SPEJ P. 191^


SPE Journal ◽  
2012 ◽  
Vol 17 (03) ◽  
pp. 661-670 ◽  
Author(s):  
Rouzbeh Ghanbarnezhad-Moghanloo ◽  
Larry W. Lake

Summary This paper examines the limits of the Walsh and Lake (WL) method for predicting the displacement performance of solvent flood when miscibility is not achieved. Despite extensive research on the applications of fractional-flow theory, the prediction of flow performance under the loss of miscibility has not been investigated thoroughly. We introduce the idea of an analogous first-contact miscible (FCM) flood to study miscibly degraded simultaneous water and gas (SWAG) displacements using the WL method. Furthermore, numerical simulation is used to validate the WL solution on one oil/solvent pair. In the simulations, the loss of miscibility (degradation) is attributed to either flow-associated dispersion or insufficient pressure to develop the miscibility. 1D SWAG injection simulations suggest that results of the WL method and the simulations are consistent when dispersion is limited. For the 2D displacements, the predicted optimal water-alternating-gas (WAG) ratio is accurate when the permeable medium is fairly homogeneous with a limited crossflow or is heterogeneous with a large lateral correlation length (the same size or greater than the interwell spacing). The results suggest that the accuracy of the WL method improves as crossflow is reduced. In addition, linear growth of the mixing zone with time is observed in cases for which the predicted optimal WAG ratio is consistent with the simulation results. Hence, we conclude that the WL solution is accurate when the mixing zone grows linearly with time.


Sign in / Sign up

Export Citation Format

Share Document