constant composition
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 48)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Екатерина Анатольевна Богданова ◽  
Владимир Михайлович Скачков ◽  
Игорь Маратович Гиниятуллин ◽  
Данил Ильич Переверзев ◽  
Ксения Валерьевна Нефедова

В статье обсуждается возможность получения упрочненного композиционного материала с пористой структурой на основе наноструктурированного гидроксиапатита, синтезированного методом осаждения из раствора. Новый материал получен путем механохимичекого синтеза гидроксиапатита с армирующими добавками диоксида циркония и кремниевой кислоты. Синтезированные образцы аттестованы с использованием современных физико-химических методов анализа. Показано влияние качественного и количественного состава композита на протекание процессов спекания, пористость, прочностные характеристики, степень дисперсности и морфологию исследуемых образцов. Экспериментально установлено, что максимальными прочностными характеристиками и постоянным составом обладает образец Ca(PO)(OH) -15%SiO⋅nHO-5%ZrO. Композиционный материал обладает плотной равномерной структурой с высокой степенью кристалличности, с развитой пористостью, является перспективным материалом для дальнейших исследований с целью внедрения его в медицинскую практику. На разработанный композиционный материал подана заявка на патент. The article discusses the possibility of obtaining a hardened composite material with a porous structure based on nanostructured hydroxyapatite (HAP) synthesized by precipitation from a solution. The new material was obtained by the mechanochemical synthesis of HAP with reinforcing additives of zirconium dioxide and silicic acid. The synthesized samples are certified using modern physicochemical methods of analysis. The influence of the qualitative and quantitative composition of the composite on the sintering processes, porosity, strength characteristics, the degree of dispersion and morphology of the studied samples is shown. It has been experimentally established that the sample has the maximum strength characteristics and a constant composition of Ca(PO)(OH) -15%SiO⋅nHO-5%ZrO. The composite material has a dense uniform structure with a high degree of crystallinity, with a developed porosity, is a promising material for further research in order to introduce it into medical practice. A patent application has been filed for the developed composite material.


Author(s):  
Muhammad Ali Al-Marhoun

AbstractThe bubble point pressure is essential for planning and managing oil field development and production strategies. The conventional procedure of the determination of bubble point pressure and volume is a trial-and-error method. Consequently, this leads to the lack of uniqueness, accuracy, and repeatability of the solution. This paper describes a new technique that utilizes the pressure–volume (PV) data obtained from the constant-composition expansion (CCE) test to determine the bubble point pressure of hydrocarbon systems. This method is a derivative-based procedure where consecutive derivative ratios form peaks. The highest peak always exists at the inflection of PV data to traverse into a two-phase region. A new mathematical model based on the exponential-power function is introduced to accurately describe the PV data above and below the bubble point. The new model leads to the direct determination of both bubble point pressure and volume simultaneously. Uniqueness, accuracy, and repeatability in the new method are guaranteed regardless of who performs the calculation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Liu ◽  
Jun Sun ◽  
Xingzhou Wang ◽  
Xiaofang Liu ◽  
Xi Wu ◽  
...  

Comprising one of the major carbon pools on Earth, marine dissolved organic matter (DOM) plays an essential role in global carbon dynamics. The objective of this study was to better characterize DOM in the eastern Indian Ocean. To better understand the underlying mechanisms, seawater samples were collected in October and November of 2020 from sampling stations in three subregions: the mouth of the Bay of Bengal, Southern Sri Lanka, and Western Sumatra. We calculated and evaluated different hydrological parameters and organic carbon concentrations. In addition, we used excitation emission matrix (EEM) spectroscopy combined with parallel factor analysis (PARAFAC) to analyze the natural water samples directly. Parameters associated with chromophoric DOM did not behave conservatively in the study areas as a result of biogeochemical processes. We further evaluated the sources and processing of DOM in the eastern Indian Ocean by determining four fluorescence indices (the fluorescence index, the biological index, the humification index, and the freshness index β/α). Based on EEM-PARAFAC, we identified six components (five fluorophores) using the peak picking technique. Commonly occurring fluorophores were present within the sample set: peak A (humic-like), peak B (protein-like), peak C (humic-like), and peak T (tryptophan-like). The fluorescence intensity levels of the protein-like components (peaks B and T) were highest in the surface ocean and decreased with depth. In contrast, the ratio of the two humic-like components (peaks A and C) remained in a relatively narrow range in the bathypelagic layer compared to the surface layer, which indicates a relatively constant composition of humic-like fluorophores in the deep layer.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4813
Author(s):  
Lilian Azubuike ◽  
Uttandaraman Sundararaj

The process of strengthening interfaces in polymer blend nanocomposites (PBNs) has been studied extensively, however a corresponding significant enhancement in the electrical and rheological properties is not always achieved. In this work, we exploit the chemical reaction between polystyrene maleic anhydride and the amine group in nylon (polyamide) to achieve an in-situ compatibilization during melt processing. Herein, nanocomposites were made by systematically adding polystyrene maleic anhydride (PSMA) at different compositions (1–10 vol%) in a two-step mixing sequence to a Polystyrene (PS)/Polyamide (aPA) blend with constant composition ratio of 25:75 (PS + PSMA:aPA) and 1.5 vol% carbon nanotube (CNT) loading. The order of addition of the individual components was varied in two-step mixing procedure to investigate the effect of mixing order on morphology and consequently, on the final properties. The electrical and rheological properties of these multiphase nanocomposite materials were investigated. The optical microscope images show that for PS/aPA systems, CNTs preferred the matrix phase aPA, which is the thermodynamically favorable phase according to the wettability parameter calculated using Young’s equation. However, aPA’s great affinity for CNT adversely influenced the electrical properties of our blend. Adding PSMA to PS/aPA changed the structure of the droplet phase significantly. At 1.5 vol% CNT, a more regular and even distribution of the droplet domains was observed, and this produced a better framework to create more CNT networks in the matrix, resulting in a higher conductivity. For example, with only 1.5 vol% CNT in the PBN, at 3 vol% PSMA, the conductivity was 7.4 × 10−2 S/m, which was three and a half orders of magnitude higher than that seen for non-reactive PS/aPA/CNT PBN. The mechanism for the enhanced conductive network formation is delineated and the improved rheological properties due to the interfacial reaction is presented.


2021 ◽  
Vol 87 (5) ◽  
pp. 14-19
Author(s):  
V. N. Fomin ◽  
S. K. Aldabergenova ◽  
K. T. Rustembekov ◽  
K. B. Omarov ◽  
I. E. Rozhkovoy ◽  
...  

A method for optimizing the settings of a LIBS device aimed at achieving the maximum intensity of analytical lines of the analyte of constant composition is considered using probabilistic-deterministic design of experiments (PDDE). A mixture of Cr, Mn, Fe, Co, and Ni oxides homogenized and diluted by fusion with a lead-phosphate mixture is used as an analyte. It is shown that data of mathematical processing of 25 spectra by the PDDE method can be used to develop mathematical models which relate the line intensity with the energy of the laser pumping lamp, the lag time of the first and second Q-switches, the time delay of the exposure onset, and the total exposure time. The use of the geometric mean and mathematical model in the form of the product of the partial dependences leads to a good correlation between the calculated and experimental values of the intensity for all the considered spectral lines. The simulation results presented for 16 analytical lines of Cr, Mn, Co, and Ni illustrate the applicability of the method under consideration. The experimentally achieved maximum intensities of analytical lines in the matrix of lead-phosphate glass differ from those calculated using the obtained models by 7 – 12 %. There is a linear correlation between the experimental and calculated values of the intensity at R2 = 0.99 and an inclination angle close to 45°. The spectra recorded during the experiment can be used for optimization of other parameters, e.g., the signal-to-noise ratio. The simplicity of calculations and relatively small number of tests in the optimization experiment make the PDDE a promising method for optimizing the LIBS parameters.


2021 ◽  
Author(s):  
Mohammad Amui Khorshidi ◽  
Hossein Beiki ◽  
Mojtaba Kanvisi

Abstract Background: Since fossil fuels are limited and their burning is considered the main reason for environmental pollution, thinkers in the energy section are looking for a substitute for them. They have considered biogas as a potent replacement. Constant composition and volumetric rate, are ones of the challenges faced in term of using biogas. Therefore, in this study, a novel easily portable continuous bioreactor was designed and constructed to produce biogas at constant composition and volumetric rate, which is suitable for human uses. Sugar beet waste and anaerobic sludge were used as substrate and inoculum with an S/I ratio of 0.5 to 1, to produce biogas. Four parameters, i.e., hydraulic retention time (HRT), pH, biogas volume, and methane composition, were measured and compared.Results: The results of the mentioned reactor were compared with those of batch ones. The measurement revealed that the continuous reactor had a good performance on biogas purity and volumetric rate. The biogas contained about 53% methane. The suitable and preferable HRT and organic loading rate (OLR) were 18 days and 34.86 g VS/day. After the 18th day of operation, the biogas production process inside the continuous reactor was stable reaching about 411.2 ml STD/g VS per day.Conclusions: The reactor designed makes the biogas production process more manageable. Besides the production of the cumulative volume of biogas and constant methane percentage was achieved. As a result, the biogas produced is consumed daily, and a certain amount of gas is available every day. Since the percentage of gas produced is constant, it is possible to adjust the gas appliances with this amount of methane.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 416
Author(s):  
Jakub Zalesak ◽  
Juraj Todt ◽  
Jan Michalička ◽  
Bernhard Sartory ◽  
Igor Matko ◽  
...  

The correlation between structural properties of Al-rich self-assembled nano-lamellar AlxTi1−xN coatings and process parameters used during their chemical vapor deposition (CVD) remains unexplored. For this article, two gradient AlxTi1−xN coatings were prepared by a stepwise increase in temperature and pressure in the ranges of 750–860 °C and 1.56 to 4.5 kPa during the depositions at a constant composition of the process gas mixture. The cross-sectional properties of the coatings were analyzed using X-ray nanodiffraction (CSnanoXRD) and electron microscopy. Experimental results indicate that the variation of the process parameters results in changes in microstructure, grain morphology, elastic strain, nanolamellae’s chemistry and bi-layer period. At temperatures of ~750–800 °C and pressures of 2.5–4.5 kPa, preferably cubic nanolamellar grains are formed, whose microstructure correlates with the build-up of tensile stresses, which become relaxed in coating regions filled with nanocrystalline grains. CSnanoXRD superlattice satellite reflections indicate the period of the cubic Al(Ti)N-Ti(Al)N bilayers, which changes from 6.7 to 9 nm due to the temperature increase from 750 to ~810 °C, while it remains nearly unaffected by the pressure variation. In summary, our study documents that CVD process parameters can be used to tune microstructural properties of self-assembled AlxTi1−xN nanolamellae as well as the coatings’ grain morphology.


2021 ◽  
Author(s):  
Ru Piin Ling ◽  
Mansoor Hussain ◽  
Amin Nizar Razak ◽  
Ayham Ashqar ◽  
Junirda Jamaludin ◽  
...  

Abstract To appraise hydrocarbon and its properties of a low permeability formation within deep Baram delta reservoirs. Formation X is low permeability silty sandstone. It forms along other formations stacked sandy shale reservoirs. The stacked formations are interpreted as Hydrocabon bearing formations based on the openhole and pressure data. However, the reservoir in question, showed features different from the adjacent reservoirs. This manuscript appraises the reservoir and illustrates the workflow followed to identify its fluid type and the best method to produce the hydrocarbon. Triple combo logs identified formation X as hydrocarbon bearing with low permeability and low porosity. Formation pressures gradients indicated the formation to be oil; however, the bottom hole sample, when pumped out, indicated alternating of oil and gas despite the low differential pressure. During the PVT measurement the sample was first re-pressurised until a single phase was achieved and it was then subjected to Differential Liberation and Constant Composition Experiments (CCE). These experiments showed the Bubble Point pressure of the sample to be higher than the reservoir pressure, thereby indicating two mobile phases in the reservoir and the probability of a Gas-Oil Contact (GOC). The Experiments were also successfully simulated and matched using the Peng Robinson Equation of State. The Laboratory experiments directly contradicted the interpretation of Wireline Logs and pressure gradient both of which, indicated single phase light oil. The collected bottom hole sample indicated that both oil and gas are mobile at reservoir level, this finding is supported by PVT laboratory experiments. The Differential Liberation, CCE experiments and EOS fitting demonstrated the fluid to be two Phases at Reservoir Condition where both phases are likely to be mobile. Therefore, it is suspected that the fluid will go from being Gas to Oil with increasing depth without going through GOC, i.e. with continuous compositional grading as is possible for fluids near their critical temperature. This phenomenon could not be captured using open hole conventional logs and therefore the is team is currently investigating the best practice to identify such reservoirs.


2021 ◽  
Author(s):  
Mauricio Calderon ◽  
Catalina Zúñiga ◽  
Francisco Hervé ◽  
Thomas Theye ◽  
Gonzalo Galaz ◽  
...  

<p>The Cordillera de Darwin Metamorphic Complex (CDMC) comprise metamorphosed supracrustal rocks and metaplutonic suites which records a unique tectonic evolution among the metamorphic complexes of the southernmost Andes. The pressure (P) and temperature (T) conditions determined in garnet-bearing schists in the Central Domain of the CDMC indicate a clockwise P-T path of metamorphism reaching burial depth as high as 12 kbar at ca. 620°C. This metamorphic event has been related to the closure of a marginal back-arc basin (Rocas Verdes Basin) and collision of an ensialic magmatic arc with the continent in the late Cretaceous. We focus on garnet-biotite schists intercalated within a huge block consisting of repeated sequences of metabasalts and amphibolites (Rocas Verdes Ophiolites), located in the Western Domain of the CDMC, at Seno Martínez. The chemical zonation of small garnet porphyroblasts (diameter of ca. 300 um) record two stages of metamorphism. Garnet is almost almandine in composition with lesser amounts of Ca, Mn and Mg.  The concentric zonation is characterized by relatively lower contents of Fe-Mg and higher contents of Ca-Mn in the core. Garnet bear tiny inclusions of clinozoisite, which is also present as isolated grains in the foliated matrix. Laths of biotite define the main foliation and have a nearly constant composition characterized by X<sub>Fe</sub> of ca. 0.6. Two generations of phengitic white mica are identified on basis of Si content (a.pf.u.) varying between 3.20-3.30 (early generation) and of ca. 3.15 (late generation). To reconstruct the P-T conditions of metamorphism through thermodynamic modeling using the Perple_X software package, the bulk rock and mineral composition were considered. Using compositional isopleths of X<sub>Fe</sub>, X<sub>Mg</sub>, X<sub>Ca</sub> and X<sub>Mn</sub> in zoned garnet, Si content in white mica and X<sub>Fe</sub> in biotite allow the constrain two stages of metamorphism (M1 and M2). The P-T conditions of M1, represented by the composition of the garnet core, are restricted to ca. 8 kbar and 400°C. M2 is restricted to ca. 7.5 kbar at 480°C, determined with the composition of the garnet rim, X<sub>Fe</sub> in biotite and Si content in late phengitic white mica. Our preliminary results indicate that ophiolitic rocks and interleaved garnet-bearing schists were tectonically buried and metamorphosed in a relatively hot subduction interface characterized by a geothermal gradient of ca. 16°C/km, prior to the collision of the ensialic magmatic arc. Acknowledgements. This study was supported by the Fondecyt grant 1161818.</p>


Sign in / Sign up

Export Citation Format

Share Document