Applying Fractional Flow Theory to Determine CO2 Storage Capacity of a Deep Saline Aquifer

2011 ◽  
Author(s):  
Rouzbeh Ghanbarnezhad Moghanloo ◽  
Larry Wayne Lake
2015 ◽  
Vol 125 ◽  
pp. 154-161 ◽  
Author(s):  
Rouzbeh Ghanbarnezhad Moghanloo ◽  
Younas Dadmohammadi ◽  
Yuan Bin ◽  
Shadi Salahshoor

Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


1980 ◽  
Vol 20 (03) ◽  
pp. 191-205 ◽  
Author(s):  
Gary A. Pope

Introduction Fractional flow theory has been applied by various authors to waterflooding, polymer flooding, carbonated waterflooding, alcohol flooding, miscible flooding, steamflooding, and various types of surfactant flooding. Many of the assumptions made by these authors are the same and are necessary for obtaining simple analytical or graphical solutions to the continuity equations. Typically, the major assumptions, which are sometimes not stated explicitly, are:one dimensional flow in a homogeneous, isotropic, isothermal porous medium,at most, two phases are flowing,at most, three components are flowing,local equilibrium exists,the fluids are incompressible,for sorbing components, the adsorption isotherm depends only on one component and has negative curvature,dispersion is negligible,gravity and capillarity are negligible,no fingering occurs,Darcy's law applies,the initial distribution of fluids is uniform, anda continuous injection of constant composition is injected, starting at time zero. Several of these assumptions are relaxed easily. One of the most useful to relax is Assumption 12, continuous injection. The principles of chromatography can be applied to analyze the more interesting case of injecting one or more slugs. Most of these processes require slug injection of chemical or solvent to be economical. In fact, a lower bound on the slug size necessary to prevent slug breakdown can be obtained from a simple extension of fractional flow theory. In this and other extensions the common new feature is the need to evaluate more than one characteristic velocity. A second example of this is the extension of fractional flow theory from simultaneous immiscible two-phase flow (the classical Buckley-Leverett waterflood problem) to simultaneous immiscible three-phase flow (the classical oil/water/gas flow problem). A third example is the extension to nonisothermal cases. Here we need to consider the energy balance, mass balance, and velocity of a front of constant temperature. A fourth example is when one or more components are partitioning between phases. In all cases, mathematically, the extension is analogous to the generalization from the one-component adsorption problems (or two-component ion exchange problems with a stoichiometric constraint) to multicomponent sorption problems. The latter theory has been worked out in a very general way for many component systems using the concept of coherence. Pope et al. recently have applied this theory to reservoir engineering involving sorption problems. SPEJ P. 191^


2015 ◽  
Vol 20 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Joongseop Hwang ◽  
Soohyun Baek ◽  
Hyesoo Lee ◽  
Woodong Jung ◽  
Wonmo Sung

SPE Journal ◽  
2012 ◽  
Vol 17 (03) ◽  
pp. 661-670 ◽  
Author(s):  
Rouzbeh Ghanbarnezhad-Moghanloo ◽  
Larry W. Lake

Summary This paper examines the limits of the Walsh and Lake (WL) method for predicting the displacement performance of solvent flood when miscibility is not achieved. Despite extensive research on the applications of fractional-flow theory, the prediction of flow performance under the loss of miscibility has not been investigated thoroughly. We introduce the idea of an analogous first-contact miscible (FCM) flood to study miscibly degraded simultaneous water and gas (SWAG) displacements using the WL method. Furthermore, numerical simulation is used to validate the WL solution on one oil/solvent pair. In the simulations, the loss of miscibility (degradation) is attributed to either flow-associated dispersion or insufficient pressure to develop the miscibility. 1D SWAG injection simulations suggest that results of the WL method and the simulations are consistent when dispersion is limited. For the 2D displacements, the predicted optimal water-alternating-gas (WAG) ratio is accurate when the permeable medium is fairly homogeneous with a limited crossflow or is heterogeneous with a large lateral correlation length (the same size or greater than the interwell spacing). The results suggest that the accuracy of the WL method improves as crossflow is reduced. In addition, linear growth of the mixing zone with time is observed in cases for which the predicted optimal WAG ratio is consistent with the simulation results. Hence, we conclude that the WL solution is accurate when the mixing zone grows linearly with time.


2013 ◽  
Vol 37 ◽  
pp. 4612-4619 ◽  
Author(s):  
Chung-Hui Chiao ◽  
Kuo-Shih Shao ◽  
Yi-Rui Lee ◽  
Chi-Wen Yu ◽  
Ming-Wei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document