Gravel Packing Deep Water Long Horizontal Wells Under Low Fracture Gradient

Author(s):  
Zhongming Chen ◽  
Rudolf J. Novotny ◽  
Rodrigo Farias ◽  
Alfredo Mendez ◽  
Carlos A. Pedroso ◽  
...  
1987 ◽  
Author(s):  
R.R. Anderson ◽  
W. Dickinson ◽  
H. Dykstra

Ground Water ◽  
1963 ◽  
Vol 1 (1) ◽  
pp. 16-24
Author(s):  
A. E. Fawcett

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhiwang Yuan ◽  
Li Yang ◽  
Yingchun Zhang ◽  
Rui Duan ◽  
Xu Zhang ◽  
...  

For deep-water faulted sandstone reservoirs, the general practice is to design long horizontal wells improving well productivity. During the project implementation stage, well tests are performed on all drilled wells to evaluate well productivity accurately. Furthermore, multisize chokes are often utilized in a shorten test time for loosen formation, high test cost, and high well productivity. Nevertheless, the conventional productivity evaluation approach cannot accurately evaluate the well test productivity and has difficulty in determining the underneath pattern. As a result, the objective of this paper is to determine a productivity evaluation method for multisize chokes long horizontal well test in deep-water faulted sandstone reservoir. This approach introduces a productivity model for long horizontal wells in faulted sandstone reservoir. It also includes the determination of steady-state test time and the productivity evaluation method for multisize chokes. In this paper, the EGINA Oilfield, a deep-water faulted sandstone reservoir, located in West Africa was chosen as the research target. Based on Renard and Dupuy’s steady-state equation, the relationship between the productivity index per meter and the length of horizontal section was derived. Consequently, this relationship is used to determine the productivity pattern for long horizontal wells with the same geological features, which can provide more accurate productivity evaluations for tested wells and forecast the well productivity for untested wells. After implementing this approach on the EGINA Oilfield, the determined relationship is capable to accurately evaluate the test productivity for long horizontal wells in reservoirs with similar characteristics and assist in examination and treatment for horizontal wells with abnormal productivity.


2015 ◽  
Author(s):  
Mamadou Diakhate ◽  
Ayman Gazawi ◽  
Bob Barree ◽  
Manuel Cossio ◽  
Beau Tinnin ◽  
...  

Abstract This paper outlines a refrac pilot testing program conducted in the Eagle Ford Shale. As wells in the Eagle Ford accumulate production over time and the pressure around the horizontal wellbore declines, it is important to also consider communication due to offset fracture stimulation. Refracturing trials in older fields, such as the Barnett Shale have yielded a positive enhancement of well performance (Siebrits et al., 2000). This paper evaluates the concept of diverting fluid and proppant along horizontal wells in the Eagle Ford, while considering any communication with older producing wells during refracturing operations. Pumping data acquired during the refracturing is used to explain some of these concepts. Modeling of induced fracture geometry, considering the effect of current pore pressures, is conducted with a fully three-dimensional hydraulic fracture numerical simulator. The pressure of the subject zone may affect the containment and rate of growth of the new fractures, as well as the re-orientation of the existing fractures. Refracturing an old horizontal well with 5,000 ft lateral length and more than 800 existing perforation holes in the casing is very challenging and requires a careful integration of reservoir knowledge, completions skills and experience. The technical team at Pioneer Natural Resources has developed an integrated workflow to design and execute a refracturing job for an Eagle Ford well. The work flow includes: 1) identification of the lower pressure areas along the lateral using surveillance data from the well, such as microseismic, tracer logs, and production data. 2) identifying which wells within the drilling schedule are offsetting older wells that have high cumulative production, and 3) designing a single fracturing job with several sub-stages separated by diverting agents. Each sub-stage is intended to target specific areas along the lateral, which were previously identified as low pressure zones. Volumes and pump schedules will be specific for each candidate and are based on but not limited to proximity to an offset well, lateral length, and existence of geological structures such as faults and fractures in the area. The results from this pilot testing program such as the radioactive tracers and the fracture gradient changes before and after refrac will be evaluated upon completion of the field execution.


2009 ◽  
Vol 24 (04) ◽  
pp. 1-7 ◽  
Author(s):  
Atila F.L. Aragão ◽  
Agostinho Calderon ◽  
Rosana F.T. Lomba ◽  
J. Nuno Moreira ◽  
Andrea de Sá ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document