cake removal
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 20)

H-INDEX

6
(FIVE YEARS 4)

Author(s):  
Osama Siddig ◽  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny

AbstractTreatment of the filter cake layer after drilling is essential for better cement integrity and to retain the original reservoir permeability. Compared to water-based filter cake, oil-based mud filter cake removal is more sophisticated as oil encloses the filter cake’s particles. Therefore, oil-based mud clean-up requires wettability alteration additives (mutual solvents and/or surfactants) for permitting acid/filter cake reaction. With an appropriate acid, microemulsions were reported to be very efficient in cleaning oil-based filter cakes, due to their low interfacial tension and high acid solubility. The objective of this paper is to provide an overview of the different techniques and treatment solutions utilized in oil-based filter cake clean-up. Furthermore, a synopsis of the various treatments for drilling fluids densified with different weighting materials is presented. Subsequently, the research limitations and opportunities have been highlighted for future work. In the light of the review that has been presented in this paper, it's recommended to conduct further investigation on some areas related to filter cake removal. The removal of filter cake formed from weighting materials other than barite, calcium carbonate, ilmenite, and manganese tetroxide needs to be investigated thoroughly. Additionally, the overall efficiency of oil-based mud removal needs to be studied under wide ranges of temperature, salinity, and pH. The utilization of surfactant-free microemulsions in filter cake treatment could also be investigated.


2021 ◽  
Vol 11 (11) ◽  
pp. 4029-4045
Author(s):  
Asad Elmgerbi ◽  
Gerhard Thonhauser ◽  
Alexander Fine ◽  
Rafael E. Hincapie ◽  
Ante Borovina

AbstractPredicting formation damage in cased-hole and open-hole completion wells is of high importance. This is especially relevant when the damage is caused by reservoir drill-in fluids hence being well-bore induced. Cake filter removal has proven to be a good approach to estimate induced damage and to evaluate drill-in fluids’ performance. We present an experimental methodology to evaluate filter cake removal, which could be achieved during the well's initial production. An improved experimental setup, to the ones presented in literature, has been developed to enhance data quality. A twofold approach was used for setup design, and first, it can be integrated with devices used to evaluate the static/dynamic filter-cake. Second, it can be used to simulate more realistic cases (field related) by adjusting the experiment parameters. Hence, to replicate the expected drawdown pressure as well as the corresponding flow rate of the studied reservoir. Three key indicators directly related to filter-cake removal were used as evaluators in this work. Lift-off pressure, internal and external filter cakes removal efficiency. Three reservoir fluid systems were studied, two polymer-based and one potassium carbonate. Results show that pressure required to initiate the collapsing process of the filter cake is not significant. Polymer-based drilling fluids showed better performance in terms of external and internal filter cake cleaning efficiency comparing to potassium carbonate. Moreover, we observed that filtrate volume has no clear relation with the degree of residual damage.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3653
Author(s):  
Marcin Kremieniewski ◽  
Rafał Wiśniowski ◽  
Stanisław Stryczek ◽  
Paweł Łopata

The tightness of the casing-rock formation interface is one of the most important elements of drilling and cementing jobs. In the absence of the required tightness, there is a risk of gas migration directly to the ground, groundwater or atmosphere. In order to eliminate this type of uncontrollable and unfavorable gas flows, the casing column is sealed with cement slurry in the annular space or beyond casing. Cement slurry displaces mud present in the annular space, although the mud cake cannot be completely removed, which is required for obtaining proper binding of cement slurry with the casing surface and the surface of the drilled formation. Therefore, it is important to prepare the well and remove the mud cake from the annular space with spacer fluid. An occasional lack of wellbore tightness requires continuous improvement of the cementing technology. Accordingly, analyses are conducted on mud cake removal with modified or new spacer fluids. Properly designed fluid should efficiently clean the surface of the casing and of the rock mass. One of the basic measurements is the analysis of the efficiency of mud cake removal from the surface of a rotational viscometer. The efficiency of traditional and newly designed fluids for mud cake removal from the casing surface with new and traditional agents has been compared further in this paper. The methodology of mud cake removal with the use of a rotational viscometer was also presented. Tests were performed for various concentrations of agents already used for spacer fluids and for a group of new agents. The efficiency of annular space cleaning was determined on the basis of a comparison with the results obtained for the reference sample, i.e., water which was used for mud cake removal from the rotor surface. The analysis of the results of experiments created bases for the comparison of the efficiency of the analyzed spacer fluids and finding the most suitable ones for mud cake removal from casing columns.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1295
Author(s):  
Marcin Kremieniewski

This article presents the results on the basis of which a new hybrid drilling washer fluid was designed. The use of fluid from such a drilling washer increases the mud-cake removal efficiency. Its operation is based on both chemical and mechanical removal of the mud cake. This article presents a group of agents and admixtures of various solid fractions, the appropriate selection of which enabled the design of a hybrid drilling washer fluid. The liquid has much better washing parameters than the drilling washers used so far. The tests were carried out in a drilling fluid flow simulator. A significant improvement in the scrubbing mud-cake removal efficiency resulted from the action of surfactants and fine-grained abrasive additives. Their proper concentration was also very important. The hybrid drilling washer fluid was designed on the basis of tests measuring the adhesion of the hardened cement slurry to the rock from which the previously produced mud was removed. In this way, the effectiveness of the washing liquids was determined. Upon analyzing the obtained results and correlating them with the reference samples, one can see a significant improvement in the efficiency of the removal of the drilling sediment by the hybrid drilling washer fluid. The hybrid drilling washer fluid is an innovative solution because it combines chemical and mechanical action in the removal of drilling fluid. Additionally, such a washing liquid has not been used so far.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Badr S. Bageri ◽  
Ibrahim Gomaa ◽  
Mohamed Mahmoud ◽  
Shirish Patil ◽  
Ayman Al-Nakhli

Abstract In sandstone formations, the quartz particles integrate with drilling fluid solids and become part of the filter cake structure. As a result, the dissolution rate of the filter cake diminishes and reduces the removal efficiency. This paper presents a novel solution to overcome the challenges that restricts the filter cake removal process such as the presence of the quartz layer and the polymer coat. A multi-stage method for removing the filter cake from a wellbore is presented. The composition of the new formulation is; ammonium fluoride (NH4F), with a strong oxidizer, such as sodium bromate (NaBrO3) causes an exothermic reaction in the first stage, thereby removing the quartz layer and polymer coat in the filter cake by the in-situ generated HF acid. During the second stage for the barite-based filter cake, chelating agents combined with convertor catalysts were used to dissolve the barite. Solubility experiments were conducted to evaluate the efficiency at each stage in the filter cake removal process at 300 ºF and 500 psi. The experimental results showed that the formulation consisting of ammonium fluoride (NH4F), with a strong oxidizer (sodium bromate,NaBrO3), combined with exothermic reaction was able to generate HF in-situ, which in turn dissolved the quartz mineral and remove the polymer from the filter cake.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4683
Author(s):  
Elayne A. Araújo ◽  
Thaine T. Caminha ◽  
Evanice M. Paiva ◽  
Raphael R. Silva ◽  
Júlio Cézar O. Freitas ◽  
...  

Oil well cleanup fluids (pre-flushes) are intermediate fluids pumped ahead of the cement slurry; they are able to clean the well walls by removing the filter cake formed by the drilling fluid, and leave the surface water-wet. This work’s main objective was to use biodegradable microemulsion systems as cleanup fluids in order to reduce the environmental impact. Three microemulsion systems were formulated, each composed of an oil phase, a surfactant and three different aqueous phases: glycerol, glycerol:water (mass ratio 1:1), and fresh water. The results show that all microemulsion systems were effective with 100% filter cake removal, with a removal time of less than 60 s. The wettability test and fluid compatibility analyses exhibited advantageous performances, without phase separation, variations in viscosity, gelation, or flocculation. The compressive strength and X-ray diffractometry (XRD) analysis showed the influence of the glycerol on the cement slurry properties, with the compressive strength resistance ranging from 8.0 to 10.7 MPa, and resulted in the formation of portlandite.


2020 ◽  
Vol 192 ◽  
pp. 107346 ◽  
Author(s):  
Osama Siddig ◽  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny

Sign in / Sign up

Export Citation Format

Share Document