Bitumen Recovery From Oil-sand Extraction Tailings: I. Bench-scale Tests

1999 ◽  
Vol 38 (09) ◽  
Author(s):  
V.H. Cheng ◽  
M.W. Mikhail ◽  
A.I.A. Salama ◽  
B. Burns
2020 ◽  
Vol 192 (11) ◽  
Author(s):  
Dale H. Vitt ◽  
Melissa House ◽  
Samantha Kitchen ◽  
R. Kelman Wieder

AbstractBogs are nutrient poor, acidic ecosystems that receive their water and nutrients entirely from precipitation (= ombrogenous) and as a result are sensitive to nutrient loading from atmospheric sources. Bogs occur frequently on the northern Alberta landscape, estimated to cover 6% of the Athabasca Oil Sands Area. As a result of oil sand extraction and processing, emissions of nitrogen (N) and sulfur (S) to the atmosphere have led to increasing N and S deposition that have the potential to alter the structure and function of these traditionally nutrient-poor ecosystems. At present, no detailed protocol is available for monitoring potential change of these sensitive ecosystems. We propose a user-friendly protocol that will monitor potential plant and lichen responses to future environmental inputs of nutrients and provide a structured means for collecting annual data. The protocol centers on measurement of five key plant/lichen attributes, including changes in (1) plant abundances, (2) dominant shrub annual growth and primary production, (3) lichen health estimated through chlorophyll/phaeophytin concentrations, (4) Sphagnum annual growth and production, and (5) annual growth of the dominant tree species (Picea mariana). We placed five permanent plots in each of six bogs located at different distances from the center of oil sand extraction and sampled these for 2 years (2018 and 2019). We compared line intercept with point intercept plant assessments using NMDS ordination, concluding that both methods provide comparable data. These data indicated that each of our six bog sites differ in key species abundances. Structural differences were apparent for the six sites between years. These differences were mostly driven by changes in Vaccinium oxycoccos, not the dominant shrubs. We developed allometric growth equations for the dominant two shrubs (Rhododendron groenlandicum and Chamaedaphne calyculata). Equations developed for each of the six sites produced growth values that were not different from one another nor from one developed using data from all sites. Annual growth of R. groenlandicum differed between sites, but not years, whereas growth of C. calyculata differed between the 2 years with more growth in 2018 compared with 2019. In comparison, Sphagnum plant density and stem bulk density both had strong site differences, with stem mass density higher in 2019. When combined, annual production of S. fuscum was greater in 2019 at three sites and not different at three of the sites. Chlorophyll and phaeophytin concentrations from the epiphytic lichen Evernia mesomorpha also differed between sites and years. This protocol for field assessments of five key plant/lichen response variables indicated that both site and year are factors that must be accounted for in future assessments. A portion of the site variation was related to patterns of N and S deposition.


2014 ◽  
Vol 25 (3) ◽  
pp. 262-267
Author(s):  
Byung Jin Song ◽  
Nansuk You ◽  
Jae Hoon Lee ◽  
Chul Wee Lee
Keyword(s):  
Oil Sand ◽  

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2409-2422 ◽  
Author(s):  
Elsayed Abdelfatah ◽  
Paula Berton ◽  
Robin D. Rogers ◽  
Steven L. Bryant

Summary Steam injection is widely used for bitumen recovery. However, steam is not efficient for shallow or thin reservoirs because of heat loss in the wellbore or to surrounding formations. Numerous alternatives have been proposed, including the addition of solvents and replacement of steam with volatile solvents. Here, we describe a new technology that combines nonvolatile ionic liquids (ILs) and waterflooding for bitumen recovery that can deliver high recovery at ambient temperature. Different ILs were designed for complete dispersal/dissolution of bitumen at ambient temperature. The designed ILs were tested in coreflood experiments with high–grade oil–sand ore from Alberta. Two different scenarios were tested: continuous injection of ILs at different injection rates and injection of a slug of ILs followed by water injection. Different slug volumes were tested at a constant injection rate. After ILs injection, the oil sand was removed from the column, and the remaining bitumen was quantified using a modified Dean–Stark method. Viscosity and solid–content measurements of the recovered samples at breakthrough were conducted. Bitumen recovery by the designed ILs can be thought of as a solution mining process. Tuning the physical and chemical properties of the ILs is the most important aspect of achieving the desired interaction with the oil–sand system. Properties of the designed IL depend on the selected cation and anion, and the strength of their intermolecular interaction. Primary amines mixed with the oleic acid chosen for IL1 form a viscous IL that can recover bitumen, leaving a slight amount of bitumen behind, but a large pressure gradient. Changing the cation to tertiary amines produces significantly less–viscous ILs, which completely recover the bitumen in the oil–sand column. Moreover, the cation can be tailored to significantly minimize the fines (clay) migration and viscosity of the recovered bitumen and to provide compatibility with an aqueous phase. In all cases, these recoveries are significant, compared with the currently used technologies. This work proves that bitumen recovery from oil sand is possible at low temperatures by means of a process analogous to solution mining with the design of the proper ILs, in contrast to viscosity–reduction processes achieved by thermal methods. The properties of these ILs can be tuned for different recovery mechanisms. Thus, this work establishes the basis for developing a new class of in–situ recovery processes with high recovery efficiencies and low environmental impact.


2018 ◽  
Author(s):  
Elsayed Abdelfatah ◽  
Paula Berton ◽  
Robin Rogers ◽  
Steven Bryant

2016 ◽  
Author(s):  
Oleksandr Kuznetsov ◽  
Oleg Mazyar ◽  
Devesh Agrawal ◽  
Radhika Suresh ◽  
Xianhua Feng ◽  
...  
Keyword(s):  
Oil Sand ◽  

Energy ◽  
2010 ◽  
Vol 35 (10) ◽  
pp. 4217-4225 ◽  
Author(s):  
Awni Al-Otoom ◽  
Mamdouh Allawzi ◽  
Naser Al-Omari ◽  
Emad Al-Hsienat

Sign in / Sign up

Export Citation Format

Share Document