indoor and outdoor
Recently Published Documents


TOTAL DOCUMENTS

2496
(FIVE YEARS 881)

H-INDEX

76
(FIVE YEARS 12)

2022 ◽  
Vol 8 (2) ◽  
pp. 1-31
Author(s):  
Chrysovalantis Anastasiou ◽  
Constantinos Costa ◽  
Panos K. Chrysanthis ◽  
Cyrus Shahabi ◽  
Demetrios Zeinalipour-Yazti

The fight against the COVID-19 pandemic has highlighted the importance and benefits of recommending paths that reduce the exposure to and the spread of the SARS-CoV-2 coronavirus by avoiding crowded indoor or outdoor areas. Existing path discovery techniques are inadequate for coping with such dynamic and heterogeneous (indoor and outdoor) environments—they typically find an optimal path assuming a homogeneous and/or static graph, and hence they cannot be used to support contact avoidance. In this article, we pose the need for Mobile Contact Avoidance Navigation and propose ASTRO ( A ccessible S patio- T emporal R oute O ptimization), a novel graph-based path discovering algorithm that can reduce the risk of COVID-19 exposure by taking into consideration the congestion in indoor spaces. ASTRO operates in an A * manner to find the most promising path for safe movement within and across multiple buildings without constructing the full graph. For its path finding, ASTRO requires predicting congestion in corridors and hallways. Consequently, we propose a new grid-based partitioning scheme combined with a hash-based two-level structure to store congestion models, called CM-Structure , which enables on-the-fly forecasting of congestion in corridors and hallways. We demonstrate the effectiveness of ASTRO and the accuracy of CM-Structure ’s congestion models empirically with realistic datasets, showing up to one order of magnitude reduction in COVID-19 exposure.


Chemosphere ◽  
2022 ◽  
Vol 289 ◽  
pp. 133154
Author(s):  
Andreja Stojić ◽  
Gordana Jovanović ◽  
Svetlana Stanišić ◽  
Snježana Herceg Romanić ◽  
Andrej Šoštarić ◽  
...  

Author(s):  
Daniel L Mendoza ◽  
Tabitha M Benney ◽  
Ryan Bares ◽  
Benjamin Fasoli ◽  
Corbin Anderson ◽  
...  

Every day around 93% of children under the age of 15 (1.8 billion children) breathe outdoor air that is so polluted it puts their health and development at serious risk. Due to the pandemic, however, ventilation of buildings using outdoor air has become an important safety technique to prevent the spread of COVID-19. With the mounting ev-idence suggesting that air pollution is impactful to human health and educational out-comes, this contradictory guidance may be problematic in schools with higher air pol-lution levels, but keeping kids COVID-19 free and in school to receive their education is now more pressing than ever. To understand if all schools in an urban area are ex-posed to similar outdoor air quality and if school infrastructure protects children equally indoors, we installed research grade sensors to observe PM2.5 concentrations in indoor and outdoor settings to understand how unequal exposure to indoor and out-door air pollution impacts indoor air quality among high- and low-income schools in Salt Lake City, Utah. Based on this approach, we found that during atmospheric inver-sions and dust events, there was a lag ranging between 35 to 73 minutes for the out-door PM2.5 concentrations to follow a similar temporal pattern as the indoor PM2.5. This lag has policy and health implications and may help to explain the rising concerns re-garding reduced educational outcomes related to air pollution in urban areas. These data and resulting analysis show that poor air quality may impact school settings, and the potential implications with respect to environmental inequality.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Baptiste Languille ◽  
Valérie Gros ◽  
Bonnaire Nicolas ◽  
Cécile Honoré ◽  
Anne Kaufmann ◽  
...  

Portable sensors have emerged as a promising solution for personal exposure (PE) measurement. For the first time in Île-de-France, PE to black carbon (BC), particulate matter (PM), and nitrogen dioxide (NO2) was quantified based on three field campaigns involving 37 volunteers from the general public wearing the sensors all day long for a week. This successful deployment demonstrated its ability to quantify PE on a large scale, in various environments (from dense urban to suburban, indoor and outdoor) and in all seasons. The impact of the visited environments was investigated. The proximity to road traffic (for BC and NO2), as well as cooking activities and tobacco smoke (for PM), made significant contributions to total exposure (up to 34%, 26%, and 44%, respectively), even though the time spent in these environments was short. Finally, even if ambient outdoor levels played a role in PE, the prominent impact of the different environments suggests that traditional ambient monitoring stations is not a proper surrogate for PE quantification.


Author(s):  
Nicola Gartland ◽  
Halah E. Aljofi ◽  
Kimberly Dienes ◽  
Luke Aaron Munford ◽  
Anna L. Theakston ◽  
...  

This review summarises the extant literature investigating the relation between traffic-related air pollution levels in and around schools and executive functioning in primary-school-aged children. An electronic search was conducted using Web of Science, Scopus, and Education Literature Datasets databases (February 2020). Review articles were also searched, and forwards and backwards searches of identified studies were performed. Included papers were assessed for quality. We included 9 separate studies (published in 13 papers). Findings suggest that indoor and outdoor particulate matter with a diameter of 2.5 μm or less (PM2.5) negatively influences executive function and academic achievement and that indoor and outdoor nitrogen dioxide (NO2) adversely affects working memory. Evidence for the effects of particulate matter with a diameter of 10 μm or less (PM10) is limited but suggests potential wide-ranging negative effects on attention, reasoning, and academic test scores. Air pollution in and around schools influences executive function and appears to impede the developmental trajectory of working memory. Further research is required to establish the extent of these effects, reproducibility, consequences for future attainment, and place within the wider context of cognitive development.


Author(s):  
Naima Boumediene ◽  
Florence Collet ◽  
Sylvie Prétot ◽  
Lazhar Ayed ◽  
Sami Elaoud

Bio-based materials are a promising tracks that offer thermal and environmental performances in order to reduce the consumption of energy and of non-renewable resources. For this purpose, in a previous study, the LGCGM worked on the development of Washing Fines Hemp composites (WFH) and characterized them on multiphysical points of view. Such materials show low thermal conductivity and high moisture buffer ability. In order to characterize their hygrothermal behavior at wall scale, a test wall is set up in an air-conditioned bi-climatic test room to simulate indoor and outdoor climates. This paper investigates the characterization of hygrothermal behavior of Washing Fines Hemp wall under typical Tunisian summer climate. It consists in an experimental study, supplemented by numerical simulation performed with WUFI Pro V6.5 software. The experimental hygrothermal response of the wall to such solicitations is analyzed from the temperature and relative humidity kinetics at several positions in the wall and from temperature and vapor pressure profiles. It shows that for daily cycles the two thirds of the thickness of the wall on the exterior side are active, as well regarding heat and moisture phenomena. More sorption-desorption phenomena are highlighted. The numerical results are consistent with experimental data for temperature and underestimate vapor pressure in the inner part of the wall.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 404
Author(s):  
Ching-Wei Chang ◽  
Li-Yu Lo ◽  
Hiu Ching Cheung ◽  
Yurong Feng ◽  
An-Shik Yang ◽  
...  

This work aimed to develop an autonomous system for unmanned aerial vehicles (UAVs) to land on moving platforms such as an automobile or a marine vessel, providing a promising solution for a long-endurance flight operation, a large mission coverage range, and a convenient recharging ground station. Unlike most state-of-the-art UAV landing frameworks that rely on UAV onboard computers and sensors, the proposed system fully depends on the computation unit situated on the ground vehicle/marine vessel to serve as a landing guidance system. Such a novel configuration can therefore lighten the burden of the UAV, and the computation power of the ground vehicle/marine vessel can be enhanced. In particular, we exploit a sensor fusion-based algorithm for the guidance system to perform UAV localization, whilst a control method based upon trajectory optimization is integrated. Indoor and outdoor experiments are conducted, and the results show that precise autonomous landing on a 43 cm × 43 cm platform can be performed.


Sign in / Sign up

Export Citation Format

Share Document